Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384068045> ?p ?o ?g. }
- W4384068045 endingPage "1964" @default.
- W4384068045 startingPage "1951" @default.
- W4384068045 abstract "Tight reservoirs around the world contain a significant volume of hydrocarbons; however, the heterogeneity of these reservoirs limits the recovery of the original oil in place to less than 20%. Accurate characterization is therefore needed to understand variations in reservoir properties and their effects on production. Water saturation (Sw) has always been challenging to estimate in ultra-tight reservoirs such as the Bakken Formation due to the inaccuracy of resistivity-based methods. While machine learning (ML) has proven to be a powerful tool for predicting rock properties in many tight formations, few studies have been conducted in reservoirs of similar complexity to the Bakken Formation, which is an ultra-tight, multimineral, low-resistivity reservoir. This study presents a workflow for Sw prediction using well logs, core data, and ML algorithms. Logs and core data were gathered from 29 wells drilled in the Bakken Formation. Due to the inaccuracy and lack of robustness of the tried and tested regression models (e.g., linear regression, random forest regression) in predicting Sw as a continuous variable, the problem was reformulated as a classification task. Instead of exact values, the Sw predictions were made in intervals of 10% increments representing 10 classes from 0% to 100%. Gradient boosting and random forest classifiers scored the best classification accuracy, and these two models were used to construct a voting classifier that achieved the best accuracy of 85.53%. The ML model achieved much better accuracy than conventional resistivity-based methods. By conducting this study, we aim to develop a new workflow to improve the prediction of Sw in reservoirs where conventional methods have poor performance." @default.
- W4384068045 created "2023-07-13" @default.
- W4384068045 creator A5025794914 @default.
- W4384068045 creator A5026280011 @default.
- W4384068045 creator A5040510100 @default.
- W4384068045 creator A5069238807 @default.
- W4384068045 creator A5091972588 @default.
- W4384068045 creator A5092453765 @default.
- W4384068045 date "2023-07-11" @default.
- W4384068045 modified "2023-09-27" @default.
- W4384068045 title "Water Saturation Prediction in the Middle Bakken Formation Using Machine Learning" @default.
- W4384068045 cites W2042095236 @default.
- W4384068045 cites W2088794999 @default.
- W4384068045 cites W2093419114 @default.
- W4384068045 cites W2345031224 @default.
- W4384068045 cites W2962943720 @default.
- W4384068045 cites W2966632508 @default.
- W4384068045 cites W3016919356 @default.
- W4384068045 cites W3116385418 @default.
- W4384068045 cites W3166059093 @default.
- W4384068045 cites W3185256938 @default.
- W4384068045 cites W4205750342 @default.
- W4384068045 cites W4285136487 @default.
- W4384068045 cites W4297348879 @default.
- W4384068045 cites W4297349128 @default.
- W4384068045 cites W4297349172 @default.
- W4384068045 cites W4297349208 @default.
- W4384068045 cites W4297916457 @default.
- W4384068045 cites W4297916507 @default.
- W4384068045 cites W4310359933 @default.
- W4384068045 cites W4322498337 @default.
- W4384068045 cites W4365998849 @default.
- W4384068045 cites W4377020966 @default.
- W4384068045 cites W4378527930 @default.
- W4384068045 doi "https://doi.org/10.3390/eng4030110" @default.
- W4384068045 hasPublicationYear "2023" @default.
- W4384068045 type Work @default.
- W4384068045 citedByCount "0" @default.
- W4384068045 crossrefType "journal-article" @default.
- W4384068045 hasAuthorship W4384068045A5025794914 @default.
- W4384068045 hasAuthorship W4384068045A5026280011 @default.
- W4384068045 hasAuthorship W4384068045A5040510100 @default.
- W4384068045 hasAuthorship W4384068045A5069238807 @default.
- W4384068045 hasAuthorship W4384068045A5091972588 @default.
- W4384068045 hasAuthorship W4384068045A5092453765 @default.
- W4384068045 hasBestOaLocation W43840680451 @default.
- W4384068045 hasConcept C105795698 @default.
- W4384068045 hasConcept C119599485 @default.
- W4384068045 hasConcept C119857082 @default.
- W4384068045 hasConcept C12267149 @default.
- W4384068045 hasConcept C127313418 @default.
- W4384068045 hasConcept C127413603 @default.
- W4384068045 hasConcept C14641988 @default.
- W4384068045 hasConcept C151730666 @default.
- W4384068045 hasConcept C154945302 @default.
- W4384068045 hasConcept C169258074 @default.
- W4384068045 hasConcept C177212765 @default.
- W4384068045 hasConcept C2780927383 @default.
- W4384068045 hasConcept C2781101838 @default.
- W4384068045 hasConcept C33923547 @default.
- W4384068045 hasConcept C41008148 @default.
- W4384068045 hasConcept C48921125 @default.
- W4384068045 hasConcept C548895740 @default.
- W4384068045 hasConcept C69990965 @default.
- W4384068045 hasConcept C70153297 @default.
- W4384068045 hasConcept C77088390 @default.
- W4384068045 hasConcept C78762247 @default.
- W4384068045 hasConcept C83546350 @default.
- W4384068045 hasConceptScore W4384068045C105795698 @default.
- W4384068045 hasConceptScore W4384068045C119599485 @default.
- W4384068045 hasConceptScore W4384068045C119857082 @default.
- W4384068045 hasConceptScore W4384068045C12267149 @default.
- W4384068045 hasConceptScore W4384068045C127313418 @default.
- W4384068045 hasConceptScore W4384068045C127413603 @default.
- W4384068045 hasConceptScore W4384068045C14641988 @default.
- W4384068045 hasConceptScore W4384068045C151730666 @default.
- W4384068045 hasConceptScore W4384068045C154945302 @default.
- W4384068045 hasConceptScore W4384068045C169258074 @default.
- W4384068045 hasConceptScore W4384068045C177212765 @default.
- W4384068045 hasConceptScore W4384068045C2780927383 @default.
- W4384068045 hasConceptScore W4384068045C2781101838 @default.
- W4384068045 hasConceptScore W4384068045C33923547 @default.
- W4384068045 hasConceptScore W4384068045C41008148 @default.
- W4384068045 hasConceptScore W4384068045C48921125 @default.
- W4384068045 hasConceptScore W4384068045C548895740 @default.
- W4384068045 hasConceptScore W4384068045C69990965 @default.
- W4384068045 hasConceptScore W4384068045C70153297 @default.
- W4384068045 hasConceptScore W4384068045C77088390 @default.
- W4384068045 hasConceptScore W4384068045C78762247 @default.
- W4384068045 hasConceptScore W4384068045C83546350 @default.
- W4384068045 hasIssue "3" @default.
- W4384068045 hasLocation W43840680451 @default.
- W4384068045 hasOpenAccess W4384068045 @default.
- W4384068045 hasPrimaryLocation W43840680451 @default.
- W4384068045 hasRelatedWork W2979979539 @default.
- W4384068045 hasRelatedWork W3004897296 @default.
- W4384068045 hasRelatedWork W3127425528 @default.
- W4384068045 hasRelatedWork W3195168932 @default.