Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384070052> ?p ?o ?g. }
- W4384070052 endingPage "033" @default.
- W4384070052 startingPage "033" @default.
- W4384070052 abstract "About a third of the $gamma$-ray sources detected by the Fermi Large Area Telescope (Fermi-LAT) remain unidentified, and some of these could be exotic objects such as dark matter subhalos. We present a search for these sources using Bayesian neural network classification methods applied to the latest 4FGL-DR3 Fermi-LAT catalog. We first simulate the $gamma$-ray properties of dark matter subhalos using models from N-body simulations and semi-analytical approaches to the subhalo distribution. We then assess the detectability of this sample in the 4FGL-DR3 catalog using the Fermi-LAT analysis tools. We train our Bayesian neural network to identify candidate dark matter subhalos among the unidentified sources in the 4FGL-DR3 catalog. Our results allow us to derive conservative bounds on the dark matter annihilation cross section by excluding unidentified sources classified as astrophysical-like by our networks. We estimate the number of candidate dark matter subhalos for different dark matter masses and provide a publicly available list for further investigation. Our bounds on the dark matter annihilation cross section are comparable to previous results and become particularly competitive at high dark matter masses." @default.
- W4384070052 created "2023-07-13" @default.
- W4384070052 creator A5003133702 @default.
- W4384070052 creator A5003404973 @default.
- W4384070052 creator A5056775033 @default.
- W4384070052 creator A5070188572 @default.
- W4384070052 date "2023-07-01" @default.
- W4384070052 modified "2023-10-13" @default.
- W4384070052 title "Searching for dark matter subhalos in the Fermi-LAT catalog with Bayesian neural networks" @default.
- W4384070052 cites W1552531782 @default.
- W4384070052 cites W1880491442 @default.
- W4384070052 cites W1981451651 @default.
- W4384070052 cites W2014748751 @default.
- W4384070052 cites W2016527243 @default.
- W4384070052 cites W2028415891 @default.
- W4384070052 cites W2034319217 @default.
- W4384070052 cites W2044661517 @default.
- W4384070052 cites W2050702251 @default.
- W4384070052 cites W2057758316 @default.
- W4384070052 cites W2058543060 @default.
- W4384070052 cites W2059302115 @default.
- W4384070052 cites W2078506508 @default.
- W4384070052 cites W2114488751 @default.
- W4384070052 cites W2116356846 @default.
- W4384070052 cites W2117444267 @default.
- W4384070052 cites W2118327995 @default.
- W4384070052 cites W2119131940 @default.
- W4384070052 cites W2129527366 @default.
- W4384070052 cites W2132377084 @default.
- W4384070052 cites W2135102304 @default.
- W4384070052 cites W2135403967 @default.
- W4384070052 cites W2144942952 @default.
- W4384070052 cites W2204815181 @default.
- W4384070052 cites W2262571428 @default.
- W4384070052 cites W2302334179 @default.
- W4384070052 cites W2345446975 @default.
- W4384070052 cites W2509368598 @default.
- W4384070052 cites W2527337467 @default.
- W4384070052 cites W2585101360 @default.
- W4384070052 cites W2600163159 @default.
- W4384070052 cites W2896478965 @default.
- W4384070052 cites W2949416507 @default.
- W4384070052 cites W2963002078 @default.
- W4384070052 cites W2972956033 @default.
- W4384070052 cites W2976974785 @default.
- W4384070052 cites W2990396942 @default.
- W4384070052 cites W3000716015 @default.
- W4384070052 cites W3011843716 @default.
- W4384070052 cites W3027520426 @default.
- W4384070052 cites W3043185247 @default.
- W4384070052 cites W3046615382 @default.
- W4384070052 cites W3081887636 @default.
- W4384070052 cites W3098113319 @default.
- W4384070052 cites W3098989743 @default.
- W4384070052 cites W3099326600 @default.
- W4384070052 cites W3100072747 @default.
- W4384070052 cites W3100454091 @default.
- W4384070052 cites W3100905755 @default.
- W4384070052 cites W3101214716 @default.
- W4384070052 cites W3103439356 @default.
- W4384070052 cites W3103877238 @default.
- W4384070052 cites W3104806032 @default.
- W4384070052 cites W3105486435 @default.
- W4384070052 cites W3112888064 @default.
- W4384070052 cites W3126023057 @default.
- W4384070052 cites W3132400002 @default.
- W4384070052 cites W3138469835 @default.
- W4384070052 cites W3212372950 @default.
- W4384070052 cites W4211080138 @default.
- W4384070052 cites W4221151700 @default.
- W4384070052 cites W4224077875 @default.
- W4384070052 cites W4225771871 @default.
- W4384070052 cites W4281715684 @default.
- W4384070052 cites W4293183835 @default.
- W4384070052 cites W4304891014 @default.
- W4384070052 cites W4306908689 @default.
- W4384070052 cites W4310563243 @default.
- W4384070052 cites W4311950009 @default.
- W4384070052 cites W4316020592 @default.
- W4384070052 cites W4322769346 @default.
- W4384070052 doi "https://doi.org/10.1088/1475-7516/2023/07/033" @default.
- W4384070052 hasPublicationYear "2023" @default.
- W4384070052 type Work @default.
- W4384070052 citedByCount "1" @default.
- W4384070052 countsByYear W43840700522023 @default.
- W4384070052 crossrefType "journal-article" @default.
- W4384070052 hasAuthorship W4384070052A5003133702 @default.
- W4384070052 hasAuthorship W4384070052A5003404973 @default.
- W4384070052 hasAuthorship W4384070052A5056775033 @default.
- W4384070052 hasAuthorship W4384070052A5070188572 @default.
- W4384070052 hasBestOaLocation W43840700523 @default.
- W4384070052 hasConcept C109214941 @default.
- W4384070052 hasConcept C121332964 @default.
- W4384070052 hasConcept C126377216 @default.
- W4384070052 hasConcept C159249277 @default.
- W4384070052 hasConcept C172790937 @default.
- W4384070052 hasConcept C186769553 @default.
- W4384070052 hasConcept C26405456 @default.