Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384071013> ?p ?o ?g. }
- W4384071013 abstract "Abstract Purpose: To predict endoleaks after thoracic endovascular aneurysm repair (TEVAR) we submitted patient characteristics and vessel features observed on pre- operative computed tomography angiography (CTA) to machine-learning. Methods: We evaluated 1-year follow-up CT scans (arterial and delayed phases) in patients who underwent TEVAR for the presence or absence of an endoleak. We evaluated the effect of machine learning of the patient age, sex, weight, and height, plus 22 vascular features on the ability to predict post-TEVAR endoleaks. The extreme Gradient Boosting (XGBoost) for ML system was trained on 14 patients with- and 131 without endoleaks. We calculated their importance by applying XGBoost to machine learning and compared our findings between with those of conventional vessel measurement-based methods such as the 22 vascular features by using the Pearson correlation coefficients. Results: Pearson correlation coefficient and 95% confidence interval (CI) were r = 0.86 and 0.75 to 0.92 for the machine learning, r = -0.44 and – 0.56 to -0.29 for the vascular angle, and r = -0.19 and -0.34 to -0.02 for the diameter between the subclavian artery and the aneurysm (Fig. 3a-3c, all: p < 0.05). With machine-learning, the univariate analysis was significant higher compared with the vascular angle and in the diameter between the subclavian artery and the aneurysm such as the conventional methods (p < 0.05). Conclusions: To predict the risk for post-TEVAR endoleaks, machine learning was superior to the conventional vessel measurement method when factors such as patient characteristics, and vascular features (vessel length, diameter, and angle) were evaluated on pre-TEVAR thoracic CTA images." @default.
- W4384071013 created "2023-07-13" @default.
- W4384071013 creator A5006106317 @default.
- W4384071013 creator A5015181851 @default.
- W4384071013 creator A5016600404 @default.
- W4384071013 creator A5026792263 @default.
- W4384071013 creator A5032643459 @default.
- W4384071013 creator A5036473659 @default.
- W4384071013 creator A5038359442 @default.
- W4384071013 creator A5040086585 @default.
- W4384071013 creator A5046585136 @default.
- W4384071013 creator A5053275355 @default.
- W4384071013 creator A5057900219 @default.
- W4384071013 creator A5068640748 @default.
- W4384071013 creator A5068835768 @default.
- W4384071013 date "2023-07-12" @default.
- W4384071013 modified "2023-09-26" @default.
- W4384071013 title "Machine learning of the patient characteristics and of vascular features observed on pre-procedural computed tomography angiographs helps to predict endovascular leaks after thoracic endovascular aneurysm repair" @default.
- W4384071013 cites W1948821238 @default.
- W4384071013 cites W1974442463 @default.
- W4384071013 cites W2008081484 @default.
- W4384071013 cites W2011753305 @default.
- W4384071013 cites W2018800244 @default.
- W4384071013 cites W2023310527 @default.
- W4384071013 cites W2036412616 @default.
- W4384071013 cites W2043493279 @default.
- W4384071013 cites W2043944692 @default.
- W4384071013 cites W2065663686 @default.
- W4384071013 cites W2086178349 @default.
- W4384071013 cites W2107628873 @default.
- W4384071013 cites W2122742247 @default.
- W4384071013 cites W2133762589 @default.
- W4384071013 cites W2136886267 @default.
- W4384071013 cites W2143834603 @default.
- W4384071013 cites W2148143831 @default.
- W4384071013 cites W2170602447 @default.
- W4384071013 cites W2328364580 @default.
- W4384071013 cites W2923418412 @default.
- W4384071013 cites W3006863342 @default.
- W4384071013 cites W3096084844 @default.
- W4384071013 cites W3173484944 @default.
- W4384071013 cites W4233276468 @default.
- W4384071013 cites W4248687927 @default.
- W4384071013 cites W4283753624 @default.
- W4384071013 doi "https://doi.org/10.21203/rs.3.rs-2725074/v1" @default.
- W4384071013 hasPublicationYear "2023" @default.
- W4384071013 type Work @default.
- W4384071013 citedByCount "0" @default.
- W4384071013 crossrefType "posted-content" @default.
- W4384071013 hasAuthorship W4384071013A5006106317 @default.
- W4384071013 hasAuthorship W4384071013A5015181851 @default.
- W4384071013 hasAuthorship W4384071013A5016600404 @default.
- W4384071013 hasAuthorship W4384071013A5026792263 @default.
- W4384071013 hasAuthorship W4384071013A5032643459 @default.
- W4384071013 hasAuthorship W4384071013A5036473659 @default.
- W4384071013 hasAuthorship W4384071013A5038359442 @default.
- W4384071013 hasAuthorship W4384071013A5040086585 @default.
- W4384071013 hasAuthorship W4384071013A5046585136 @default.
- W4384071013 hasAuthorship W4384071013A5053275355 @default.
- W4384071013 hasAuthorship W4384071013A5057900219 @default.
- W4384071013 hasAuthorship W4384071013A5068640748 @default.
- W4384071013 hasAuthorship W4384071013A5068835768 @default.
- W4384071013 hasBestOaLocation W43840710131 @default.
- W4384071013 hasConcept C126322002 @default.
- W4384071013 hasConcept C126838900 @default.
- W4384071013 hasConcept C144301174 @default.
- W4384071013 hasConcept C2776098176 @default.
- W4384071013 hasConcept C2776543907 @default.
- W4384071013 hasConcept C2777323849 @default.
- W4384071013 hasConcept C2779993416 @default.
- W4384071013 hasConcept C2780643987 @default.
- W4384071013 hasConcept C2780847584 @default.
- W4384071013 hasConcept C2781347138 @default.
- W4384071013 hasConcept C2994150672 @default.
- W4384071013 hasConcept C38180746 @default.
- W4384071013 hasConcept C44249647 @default.
- W4384071013 hasConcept C71924100 @default.
- W4384071013 hasConceptScore W4384071013C126322002 @default.
- W4384071013 hasConceptScore W4384071013C126838900 @default.
- W4384071013 hasConceptScore W4384071013C144301174 @default.
- W4384071013 hasConceptScore W4384071013C2776098176 @default.
- W4384071013 hasConceptScore W4384071013C2776543907 @default.
- W4384071013 hasConceptScore W4384071013C2777323849 @default.
- W4384071013 hasConceptScore W4384071013C2779993416 @default.
- W4384071013 hasConceptScore W4384071013C2780643987 @default.
- W4384071013 hasConceptScore W4384071013C2780847584 @default.
- W4384071013 hasConceptScore W4384071013C2781347138 @default.
- W4384071013 hasConceptScore W4384071013C2994150672 @default.
- W4384071013 hasConceptScore W4384071013C38180746 @default.
- W4384071013 hasConceptScore W4384071013C44249647 @default.
- W4384071013 hasConceptScore W4384071013C71924100 @default.
- W4384071013 hasLocation W43840710131 @default.
- W4384071013 hasOpenAccess W4384071013 @default.
- W4384071013 hasPrimaryLocation W43840710131 @default.
- W4384071013 hasRelatedWork W1986428380 @default.
- W4384071013 hasRelatedWork W2142545503 @default.
- W4384071013 hasRelatedWork W2234265290 @default.
- W4384071013 hasRelatedWork W2273419995 @default.
- W4384071013 hasRelatedWork W2323401144 @default.
- W4384071013 hasRelatedWork W2391802168 @default.