Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384071483> ?p ?o ?g. }
- W4384071483 abstract "Abstract With the aim of helping to set safe exposure limits for the general population, various techniques have been implemented to conduct risk assessments for chemicals and other environmental stressors; however, none of these tools facilitate the identification of completely new chemicals that are likely hazardous and elicit an adverse biological effect. Here, we detail a novel in silico , deep-learning framework that is designed to systematically generate structures for new chemical compounds that are predicted to be chemical hazards. To assess the utility of the framework, we applied the tool to four endpoints related to environmental toxicants and their impacts on human and animal health: (i) toxicity to honeybees, (ii) immunotoxicity, (iii) endocrine disruption via ER- α antagonism, and (iv) mutagenicity. In addition, we characterized the predicted potency of these compounds and examined their structural relationship to existing chemicals of concern. As part of the array of emerging new approach methodologies (NAMs), we anticipate that such a framework will be a significant asset to risk assessors and other environmental scientists when planning and forecasting. Though not in the scope of the present study, we expect that the methodology detailed here could also be useful in the de novo design of more environmentally-friendly industrial chemicals." @default.
- W4384071483 created "2023-07-13" @default.
- W4384071483 creator A5005661859 @default.
- W4384071483 creator A5042358913 @default.
- W4384071483 creator A5057291575 @default.
- W4384071483 date "2023-07-12" @default.
- W4384071483 modified "2023-09-25" @default.
- W4384071483 title "A Deep-Learning Approach for Identifying Prospective Chemical Hazards" @default.
- W4384071483 cites W1516047853 @default.
- W4384071483 cites W1972572728 @default.
- W4384071483 cites W1974146726 @default.
- W4384071483 cites W1974217384 @default.
- W4384071483 cites W1975147762 @default.
- W4384071483 cites W2000682768 @default.
- W4384071483 cites W2006961531 @default.
- W4384071483 cites W2011350023 @default.
- W4384071483 cites W2027482274 @default.
- W4384071483 cites W2035759078 @default.
- W4384071483 cites W2043544710 @default.
- W4384071483 cites W2060531713 @default.
- W4384071483 cites W2087823402 @default.
- W4384071483 cites W2088916196 @default.
- W4384071483 cites W2092363626 @default.
- W4384071483 cites W2093606873 @default.
- W4384071483 cites W2099251250 @default.
- W4384071483 cites W2122025333 @default.
- W4384071483 cites W2142805768 @default.
- W4384071483 cites W2148619299 @default.
- W4384071483 cites W2194873522 @default.
- W4384071483 cites W2204695023 @default.
- W4384071483 cites W2502929335 @default.
- W4384071483 cites W2538044015 @default.
- W4384071483 cites W2548357532 @default.
- W4384071483 cites W2772288444 @default.
- W4384071483 cites W2782966146 @default.
- W4384071483 cites W2791323877 @default.
- W4384071483 cites W2793158785 @default.
- W4384071483 cites W2801088198 @default.
- W4384071483 cites W2884283607 @default.
- W4384071483 cites W2949437520 @default.
- W4384071483 cites W2989747636 @default.
- W4384071483 cites W3023925438 @default.
- W4384071483 cites W3027911235 @default.
- W4384071483 cites W3113907013 @default.
- W4384071483 cites W3137523709 @default.
- W4384071483 cites W3163820073 @default.
- W4384071483 cites W3164774776 @default.
- W4384071483 cites W3165171933 @default.
- W4384071483 cites W3197005082 @default.
- W4384071483 cites W3211393882 @default.
- W4384071483 cites W4210834074 @default.
- W4384071483 cites W4211245166 @default.
- W4384071483 cites W4224303411 @default.
- W4384071483 cites W4280612213 @default.
- W4384071483 cites W4283704882 @default.
- W4384071483 cites W4304203195 @default.
- W4384071483 cites W4309988196 @default.
- W4384071483 cites W4311326710 @default.
- W4384071483 cites W4321501969 @default.
- W4384071483 doi "https://doi.org/10.21203/rs.3.rs-3121421/v1" @default.
- W4384071483 hasPublicationYear "2023" @default.
- W4384071483 type Work @default.
- W4384071483 citedByCount "0" @default.
- W4384071483 crossrefType "posted-content" @default.
- W4384071483 hasAuthorship W4384071483A5005661859 @default.
- W4384071483 hasAuthorship W4384071483A5042358913 @default.
- W4384071483 hasAuthorship W4384071483A5057291575 @default.
- W4384071483 hasBestOaLocation W43840714831 @default.
- W4384071483 hasConcept C112930515 @default.
- W4384071483 hasConcept C116834253 @default.
- W4384071483 hasConcept C12174686 @default.
- W4384071483 hasConcept C127413603 @default.
- W4384071483 hasConcept C144133560 @default.
- W4384071483 hasConcept C183696295 @default.
- W4384071483 hasConcept C18903297 @default.
- W4384071483 hasConcept C199360897 @default.
- W4384071483 hasConcept C22507642 @default.
- W4384071483 hasConcept C2778012447 @default.
- W4384071483 hasConcept C2908647359 @default.
- W4384071483 hasConcept C2910206359 @default.
- W4384071483 hasConcept C38652104 @default.
- W4384071483 hasConcept C41008148 @default.
- W4384071483 hasConcept C70721500 @default.
- W4384071483 hasConcept C71924100 @default.
- W4384071483 hasConcept C76178495 @default.
- W4384071483 hasConcept C86803240 @default.
- W4384071483 hasConcept C99454951 @default.
- W4384071483 hasConceptScore W4384071483C112930515 @default.
- W4384071483 hasConceptScore W4384071483C116834253 @default.
- W4384071483 hasConceptScore W4384071483C12174686 @default.
- W4384071483 hasConceptScore W4384071483C127413603 @default.
- W4384071483 hasConceptScore W4384071483C144133560 @default.
- W4384071483 hasConceptScore W4384071483C183696295 @default.
- W4384071483 hasConceptScore W4384071483C18903297 @default.
- W4384071483 hasConceptScore W4384071483C199360897 @default.
- W4384071483 hasConceptScore W4384071483C22507642 @default.
- W4384071483 hasConceptScore W4384071483C2778012447 @default.
- W4384071483 hasConceptScore W4384071483C2908647359 @default.
- W4384071483 hasConceptScore W4384071483C2910206359 @default.
- W4384071483 hasConceptScore W4384071483C38652104 @default.