Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384072414> ?p ?o ?g. }
- W4384072414 endingPage "243" @default.
- W4384072414 startingPage "232" @default.
- W4384072414 abstract "Abstract Making responsible lending decisions involves many factors. There is a growing amount of research on machine learning applied to credit risk evaluation. This promises to enhance diversity in lending without impacting the quality of the credit available by using data on previous lending decisions and their outcomes. However, often the most accurate machine learning methods predict in ways that are not transparent to human domain experts. A consequence is increasing regulation in jurisdictions across the world requiring automated decisions to be explainable. Before the emergence of data-driven technologies lending decisions were based on human expertise, so explainable lending decisions can, in principle, be assessed by human domain experts to ensure they are fair and ethical. In this study we hypothesised that human expertise may be used to overcome the limitations of inadequate data. Using benchmark data, we investigated using machine learning on a small training set and then correcting errors in the training data with human expertise applied through Ripple-Down Rules. We found that the resulting combined model not only performed equivalently to a model learned from a large set of training data, but that the human expert’s rules also improved the decision making of the latter model. The approach is general, and can be used not only to improve the appropriateness of lending decisions, but also potentially to improve responsible decision making in any domain where machine learning training data is limited in quantity or quality." @default.
- W4384072414 created "2023-07-13" @default.
- W4384072414 creator A5038521182 @default.
- W4384072414 creator A5045130770 @default.
- W4384072414 creator A5058225317 @default.
- W4384072414 creator A5060904625 @default.
- W4384072414 creator A5071511745 @default.
- W4384072414 date "2023-07-12" @default.
- W4384072414 modified "2023-10-12" @default.
- W4384072414 title "Responsible Credit Risk Assessment with Machine Learning and Knowledge Acquisition" @default.
- W4384072414 cites W156843572 @default.
- W4384072414 cites W1678356000 @default.
- W4384072414 cites W1824212668 @default.
- W4384072414 cites W1982723649 @default.
- W4384072414 cites W2012251886 @default.
- W4384072414 cites W2036547589 @default.
- W4384072414 cites W2119868504 @default.
- W4384072414 cites W2131816657 @default.
- W4384072414 cites W2168123127 @default.
- W4384072414 cites W2282821441 @default.
- W4384072414 cites W27290116 @default.
- W4384072414 cites W2797903483 @default.
- W4384072414 cites W2918821272 @default.
- W4384072414 cites W2962772482 @default.
- W4384072414 cites W2967730222 @default.
- W4384072414 cites W2981731882 @default.
- W4384072414 cites W3000463950 @default.
- W4384072414 cites W3034563984 @default.
- W4384072414 cites W3044323082 @default.
- W4384072414 cites W3100279624 @default.
- W4384072414 cites W3102476541 @default.
- W4384072414 cites W3173674831 @default.
- W4384072414 cites W3173725123 @default.
- W4384072414 cites W3176827378 @default.
- W4384072414 cites W3181414820 @default.
- W4384072414 cites W4229632424 @default.
- W4384072414 cites W4244412683 @default.
- W4384072414 cites W4280578116 @default.
- W4384072414 cites W4281704500 @default.
- W4384072414 cites W4286432986 @default.
- W4384072414 cites W4304014782 @default.
- W4384072414 doi "https://doi.org/10.1007/s44230-023-00035-1" @default.
- W4384072414 hasPublicationYear "2023" @default.
- W4384072414 type Work @default.
- W4384072414 citedByCount "0" @default.
- W4384072414 crossrefType "journal-article" @default.
- W4384072414 hasAuthorship W4384072414A5038521182 @default.
- W4384072414 hasAuthorship W4384072414A5045130770 @default.
- W4384072414 hasAuthorship W4384072414A5058225317 @default.
- W4384072414 hasAuthorship W4384072414A5060904625 @default.
- W4384072414 hasAuthorship W4384072414A5071511745 @default.
- W4384072414 hasBestOaLocation W43840724141 @default.
- W4384072414 hasConcept C111472728 @default.
- W4384072414 hasConcept C112930515 @default.
- W4384072414 hasConcept C119857082 @default.
- W4384072414 hasConcept C13280743 @default.
- W4384072414 hasConcept C134306372 @default.
- W4384072414 hasConcept C138885662 @default.
- W4384072414 hasConcept C144133560 @default.
- W4384072414 hasConcept C154945302 @default.
- W4384072414 hasConcept C177264268 @default.
- W4384072414 hasConcept C185798385 @default.
- W4384072414 hasConcept C199360897 @default.
- W4384072414 hasConcept C205649164 @default.
- W4384072414 hasConcept C207685749 @default.
- W4384072414 hasConcept C2779530757 @default.
- W4384072414 hasConcept C33923547 @default.
- W4384072414 hasConcept C36503486 @default.
- W4384072414 hasConcept C41008148 @default.
- W4384072414 hasConcept C51632099 @default.
- W4384072414 hasConceptScore W4384072414C111472728 @default.
- W4384072414 hasConceptScore W4384072414C112930515 @default.
- W4384072414 hasConceptScore W4384072414C119857082 @default.
- W4384072414 hasConceptScore W4384072414C13280743 @default.
- W4384072414 hasConceptScore W4384072414C134306372 @default.
- W4384072414 hasConceptScore W4384072414C138885662 @default.
- W4384072414 hasConceptScore W4384072414C144133560 @default.
- W4384072414 hasConceptScore W4384072414C154945302 @default.
- W4384072414 hasConceptScore W4384072414C177264268 @default.
- W4384072414 hasConceptScore W4384072414C185798385 @default.
- W4384072414 hasConceptScore W4384072414C199360897 @default.
- W4384072414 hasConceptScore W4384072414C205649164 @default.
- W4384072414 hasConceptScore W4384072414C207685749 @default.
- W4384072414 hasConceptScore W4384072414C2779530757 @default.
- W4384072414 hasConceptScore W4384072414C33923547 @default.
- W4384072414 hasConceptScore W4384072414C36503486 @default.
- W4384072414 hasConceptScore W4384072414C41008148 @default.
- W4384072414 hasConceptScore W4384072414C51632099 @default.
- W4384072414 hasIssue "3" @default.
- W4384072414 hasLocation W43840724141 @default.
- W4384072414 hasOpenAccess W4384072414 @default.
- W4384072414 hasPrimaryLocation W43840724141 @default.
- W4384072414 hasRelatedWork W2157561456 @default.
- W4384072414 hasRelatedWork W2792951589 @default.
- W4384072414 hasRelatedWork W3150234497 @default.
- W4384072414 hasRelatedWork W3199905569 @default.
- W4384072414 hasRelatedWork W3201070945 @default.
- W4384072414 hasRelatedWork W3201795961 @default.