Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384079407> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4384079407 endingPage "107" @default.
- W4384079407 startingPage "103" @default.
- W4384079407 abstract "Position data in team sports, like handball, allow for novel approaches of quantitative analysis. Recent work used notational analysis of domain experts to find performance indicators related to success. The aim of this study was to scale expert knowledge using machine learning to extract counter attacks and position attacks from a data set of 539 elite-level handball matches. Videos from 10 games were analyzed. Each ball possession phase was labeled as either counter or position attack. The labels were used to train a graph-based deep neural network. The trained network was used to extract 62,648 position attacks and 19,262 counter attacks. The results show that counter attacks are shorter and players have higher mean velocities. However, distance covered are similar in counter attacks and position attacks. Additionally, winning teams attempt more then 50% of their counter attacks in the first half, while losing teams tend to have more counter attacks in the second half. The results of this study show that machine learning can be used to apply expert knowledge to large data sets and give novel insights into the characteristics of counter attacks and position attacks as well as tactical behavior of winning and losing teams." @default.
- W4384079407 created "2023-07-13" @default.
- W4384079407 creator A5031711200 @default.
- W4384079407 creator A5057357328 @default.
- W4384079407 creator A5074006261 @default.
- W4384079407 creator A5092456131 @default.
- W4384079407 date "2023-01-01" @default.
- W4384079407 modified "2023-09-25" @default.
- W4384079407 title "Automatic Segmentation and Contextualization of Elite Handball Matches with Machine Learning" @default.
- W4384079407 cites W1992808615 @default.
- W4384079407 cites W2514295870 @default.
- W4384079407 cites W2657933284 @default.
- W4384079407 cites W2786199355 @default.
- W4384079407 cites W2896883025 @default.
- W4384079407 cites W2901906577 @default.
- W4384079407 cites W2951815992 @default.
- W4384079407 cites W2967555199 @default.
- W4384079407 cites W3131473882 @default.
- W4384079407 cites W4281664351 @default.
- W4384079407 cites W4283033183 @default.
- W4384079407 cites W4293109617 @default.
- W4384079407 doi "https://doi.org/10.1007/978-3-031-31772-9_22" @default.
- W4384079407 hasPublicationYear "2023" @default.
- W4384079407 type Work @default.
- W4384079407 citedByCount "0" @default.
- W4384079407 crossrefType "book-chapter" @default.
- W4384079407 hasAuthorship W4384079407A5031711200 @default.
- W4384079407 hasAuthorship W4384079407A5057357328 @default.
- W4384079407 hasAuthorship W4384079407A5074006261 @default.
- W4384079407 hasAuthorship W4384079407A5092456131 @default.
- W4384079407 hasConcept C10138342 @default.
- W4384079407 hasConcept C119857082 @default.
- W4384079407 hasConcept C154945302 @default.
- W4384079407 hasConcept C162324750 @default.
- W4384079407 hasConcept C17744445 @default.
- W4384079407 hasConcept C198082294 @default.
- W4384079407 hasConcept C199539241 @default.
- W4384079407 hasConcept C2775987171 @default.
- W4384079407 hasConcept C2777582232 @default.
- W4384079407 hasConcept C41008148 @default.
- W4384079407 hasConcept C50644808 @default.
- W4384079407 hasConcept C94625758 @default.
- W4384079407 hasConceptScore W4384079407C10138342 @default.
- W4384079407 hasConceptScore W4384079407C119857082 @default.
- W4384079407 hasConceptScore W4384079407C154945302 @default.
- W4384079407 hasConceptScore W4384079407C162324750 @default.
- W4384079407 hasConceptScore W4384079407C17744445 @default.
- W4384079407 hasConceptScore W4384079407C198082294 @default.
- W4384079407 hasConceptScore W4384079407C199539241 @default.
- W4384079407 hasConceptScore W4384079407C2775987171 @default.
- W4384079407 hasConceptScore W4384079407C2777582232 @default.
- W4384079407 hasConceptScore W4384079407C41008148 @default.
- W4384079407 hasConceptScore W4384079407C50644808 @default.
- W4384079407 hasConceptScore W4384079407C94625758 @default.
- W4384079407 hasLocation W43840794071 @default.
- W4384079407 hasOpenAccess W4384079407 @default.
- W4384079407 hasPrimaryLocation W43840794071 @default.
- W4384079407 hasRelatedWork W2329379629 @default.
- W4384079407 hasRelatedWork W2356037883 @default.
- W4384079407 hasRelatedWork W2584954989 @default.
- W4384079407 hasRelatedWork W2961085424 @default.
- W4384079407 hasRelatedWork W4245760178 @default.
- W4384079407 hasRelatedWork W4286629047 @default.
- W4384079407 hasRelatedWork W4306674287 @default.
- W4384079407 hasRelatedWork W4375906490 @default.
- W4384079407 hasRelatedWork W1629725936 @default.
- W4384079407 hasRelatedWork W4224009465 @default.
- W4384079407 isParatext "false" @default.
- W4384079407 isRetracted "false" @default.
- W4384079407 workType "book-chapter" @default.