Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384080217> ?p ?o ?g. }
- W4384080217 endingPage "92549" @default.
- W4384080217 startingPage "92540" @default.
- W4384080217 abstract "Audio denoising is a task to improve the perceptual quality of noisy audio signals. There is still residual noise after the denoising of noisy signals, which will affect the quality of audio data. Traditional and deep learning-based methods are still limited to the manual addition of artificial noise or low-frequency noise. Recently, audio denoising has been transformed into an image segmentation problem, and deep neural networks have been applied to solve this problem. However, its performance is limited to shallow image segmentation models. This paper proposes a novel vision transformer model for visual bird sound denoising, combining a pyramid transformer and DeepLabV3+ network (named PtDeepLab) to filter out the noise. The proposed PtDeepLab model is based on the pyramid transformer, which generates long-range and multi-scale representations. The PtDeepLab model can achieve intuitive noise reduction in audio, which helps to separate clean audio from the mixture signal. Extensive experimental results showed that the proposed model has a better denoising performance than state-of-the-art methods." @default.
- W4384080217 created "2023-07-13" @default.
- W4384080217 creator A5018132970 @default.
- W4384080217 creator A5040899817 @default.
- W4384080217 creator A5079460371 @default.
- W4384080217 date "2023-01-01" @default.
- W4384080217 modified "2023-09-23" @default.
- W4384080217 title "DeepLabV3+ Vision Transformer for Visual Bird Sound Denoising" @default.
- W4384080217 cites W2030212703 @default.
- W4384080217 cites W2044893557 @default.
- W4384080217 cites W2096779346 @default.
- W4384080217 cites W2121973264 @default.
- W4384080217 cites W2122979854 @default.
- W4384080217 cites W2128402994 @default.
- W4384080217 cites W2128653836 @default.
- W4384080217 cites W2136738044 @default.
- W4384080217 cites W2153894152 @default.
- W4384080217 cites W2157562541 @default.
- W4384080217 cites W2164007105 @default.
- W4384080217 cites W2408744528 @default.
- W4384080217 cites W2412782625 @default.
- W4384080217 cites W2414102402 @default.
- W4384080217 cites W2725252010 @default.
- W4384080217 cites W2768531411 @default.
- W4384080217 cites W2788241093 @default.
- W4384080217 cites W2889442120 @default.
- W4384080217 cites W2903516699 @default.
- W4384080217 cites W2954198060 @default.
- W4384080217 cites W2963453742 @default.
- W4384080217 cites W2963881378 @default.
- W4384080217 cites W2983446232 @default.
- W4384080217 cites W2995679912 @default.
- W4384080217 cites W2997775613 @default.
- W4384080217 cites W3015654783 @default.
- W4384080217 cites W3016447038 @default.
- W4384080217 cites W3025800305 @default.
- W4384080217 cites W3081108418 @default.
- W4384080217 cites W3084306245 @default.
- W4384080217 cites W3087443678 @default.
- W4384080217 cites W3094550259 @default.
- W4384080217 cites W3105563334 @default.
- W4384080217 cites W3122264812 @default.
- W4384080217 cites W3129077738 @default.
- W4384080217 cites W3131500599 @default.
- W4384080217 cites W3138516171 @default.
- W4384080217 cites W3147966746 @default.
- W4384080217 cites W3151130473 @default.
- W4384080217 cites W3161950572 @default.
- W4384080217 cites W3178192988 @default.
- W4384080217 cites W3196050932 @default.
- W4384080217 cites W3196974791 @default.
- W4384080217 cites W3197734536 @default.
- W4384080217 cites W3212933375 @default.
- W4384080217 cites W4214893857 @default.
- W4384080217 cites W4225288502 @default.
- W4384080217 cites W4285258106 @default.
- W4384080217 cites W4296425595 @default.
- W4384080217 cites W4304809245 @default.
- W4384080217 cites W4312726009 @default.
- W4384080217 cites W4319300024 @default.
- W4384080217 doi "https://doi.org/10.1109/access.2023.3294476" @default.
- W4384080217 hasPublicationYear "2023" @default.
- W4384080217 type Work @default.
- W4384080217 citedByCount "0" @default.
- W4384080217 crossrefType "journal-article" @default.
- W4384080217 hasAuthorship W4384080217A5018132970 @default.
- W4384080217 hasAuthorship W4384080217A5040899817 @default.
- W4384080217 hasAuthorship W4384080217A5079460371 @default.
- W4384080217 hasBestOaLocation W43840802171 @default.
- W4384080217 hasConcept C119599485 @default.
- W4384080217 hasConcept C127413603 @default.
- W4384080217 hasConcept C13895895 @default.
- W4384080217 hasConcept C153180895 @default.
- W4384080217 hasConcept C154945302 @default.
- W4384080217 hasConcept C163294075 @default.
- W4384080217 hasConcept C165801399 @default.
- W4384080217 hasConcept C167310288 @default.
- W4384080217 hasConcept C202474056 @default.
- W4384080217 hasConcept C23431618 @default.
- W4384080217 hasConcept C2781238097 @default.
- W4384080217 hasConcept C28490314 @default.
- W4384080217 hasConcept C29265498 @default.
- W4384080217 hasConcept C30814859 @default.
- W4384080217 hasConcept C31972630 @default.
- W4384080217 hasConcept C41008148 @default.
- W4384080217 hasConcept C64922751 @default.
- W4384080217 hasConcept C66322947 @default.
- W4384080217 hasConceptScore W4384080217C119599485 @default.
- W4384080217 hasConceptScore W4384080217C127413603 @default.
- W4384080217 hasConceptScore W4384080217C13895895 @default.
- W4384080217 hasConceptScore W4384080217C153180895 @default.
- W4384080217 hasConceptScore W4384080217C154945302 @default.
- W4384080217 hasConceptScore W4384080217C163294075 @default.
- W4384080217 hasConceptScore W4384080217C165801399 @default.
- W4384080217 hasConceptScore W4384080217C167310288 @default.
- W4384080217 hasConceptScore W4384080217C202474056 @default.
- W4384080217 hasConceptScore W4384080217C23431618 @default.
- W4384080217 hasConceptScore W4384080217C2781238097 @default.