Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384080276> ?p ?o ?g. }
- W4384080276 endingPage "71924" @default.
- W4384080276 startingPage "71905" @default.
- W4384080276 abstract "An automated Neurological Disorder detection system can be considered as a cost-effective and resource efficient tool for medical and healthcare applications. In automated Neurological Disorder detection, electroencephalograms are commonly used, but their low signal intensity and nonlinear features are difficult to analyze visually. A promising approach for processing of electroencephalogram signals is the concept of entropy, a nonlinear signal processing method to measure the chaos in the signal. The aim of this study was to find out the effective entropy measures and the machine learning approaches that produced promising output. Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines as our method, we have identified 84 studies published between 2012 and 2022 that has investigated epilepsy, Parkinson’s disease, autism, Attention Deficit Hyperactive disorder, schizophrenia, Alzheimer’s disease, depression, and alcohol use disorder with machine learning approaches considering entropy measures. We show that Support Vector Machines was the most commonly used machine learning model, with consistent performance in most of the studies whereas sample entropy was the most commonly used entropy measure, followed by the approximate entropy. For epilepsy detection, the most used entropy feature was the log energy entropy, whereas the multi-scale entropy was commonly used for Alzheimer’s Disease, approximate and sample entropy used for Parkinson’s Disease, multi scale and Shannon entropy applied for autism, approximate and Shannon entropy used for attention deficit hyperactive disorder, sample entropy used for depression, approximate and spectral entropy adopted for schizophrenia, and the approximate and sample entropy employed for alcohol use disorder. According to the majority of the studies, there is growing concern about the increase in neuro patients and the heavy resource burden that is associated with their prevalence and diagnosis. Based on these studies, we conclude that Computer-Aided Design systems would be economically advantageous in detecting Neurological Disorders. To incorporate Computer-Aided Design system into the mainstream health care system, future research could focus on multi-modal approaches to the disorder and its interpretation and explanation. We believe this is the first review that has combined the electroencephalograms, entropy, and automated detection possibility of the 8 distinct neurological disorders. The study is limited to the papers that used accuracy as their performance evaluation metric. The findings and synthesis of previous studies provides a clear pathway that identifies the entropy approach as a practical solution for automated detection of neurological disorder using electroencephalograms with potential applications in other kinds of signal analysis." @default.
- W4384080276 created "2023-07-13" @default.
- W4384080276 creator A5012650575 @default.
- W4384080276 creator A5016221020 @default.
- W4384080276 creator A5030412524 @default.
- W4384080276 creator A5045783666 @default.
- W4384080276 creator A5065141057 @default.
- W4384080276 creator A5088810965 @default.
- W4384080276 date "2023-01-01" @default.
- W4384080276 modified "2023-10-16" @default.
- W4384080276 title "Application of Entropy for Automated Detection of Neurological Disorders With Electroencephalogram Signals: A Review of the Last Decade (2012–2022)" @default.
- W4384080276 cites W1209852327 @default.
- W4384080276 cites W1823928250 @default.
- W4384080276 cites W1862394037 @default.
- W4384080276 cites W1965239040 @default.
- W4384080276 cites W1968059839 @default.
- W4384080276 cites W1969692299 @default.
- W4384080276 cites W1976724965 @default.
- W4384080276 cites W1978959816 @default.
- W4384080276 cites W1983874169 @default.
- W4384080276 cites W1984963203 @default.
- W4384080276 cites W1993933805 @default.
- W4384080276 cites W1998302204 @default.
- W4384080276 cites W2000292092 @default.
- W4384080276 cites W2010444781 @default.
- W4384080276 cites W2014683958 @default.
- W4384080276 cites W2035525391 @default.
- W4384080276 cites W2037222792 @default.
- W4384080276 cites W2040637656 @default.
- W4384080276 cites W2041875327 @default.
- W4384080276 cites W2054640142 @default.
- W4384080276 cites W2054931962 @default.
- W4384080276 cites W2060482626 @default.
- W4384080276 cites W2065439482 @default.
- W4384080276 cites W2066804398 @default.
- W4384080276 cites W2076813887 @default.
- W4384080276 cites W2090704006 @default.
- W4384080276 cites W2090773675 @default.
- W4384080276 cites W2091266011 @default.
- W4384080276 cites W2093266575 @default.
- W4384080276 cites W2093977564 @default.
- W4384080276 cites W2095217667 @default.
- W4384080276 cites W2098149468 @default.
- W4384080276 cites W2106443532 @default.
- W4384080276 cites W2114851331 @default.
- W4384080276 cites W2130572724 @default.
- W4384080276 cites W2141636993 @default.
- W4384080276 cites W2155308699 @default.
- W4384080276 cites W2156340241 @default.
- W4384080276 cites W2164104048 @default.
- W4384080276 cites W2167532647 @default.
- W4384080276 cites W2253396289 @default.
- W4384080276 cites W2256628866 @default.
- W4384080276 cites W2292649956 @default.
- W4384080276 cites W2316616874 @default.
- W4384080276 cites W2401781275 @default.
- W4384080276 cites W2461134574 @default.
- W4384080276 cites W2461733848 @default.
- W4384080276 cites W2471605275 @default.
- W4384080276 cites W2487364607 @default.
- W4384080276 cites W2492804124 @default.
- W4384080276 cites W2518736501 @default.
- W4384080276 cites W2521002893 @default.
- W4384080276 cites W2558317411 @default.
- W4384080276 cites W2580194401 @default.
- W4384080276 cites W2590656077 @default.
- W4384080276 cites W2601901846 @default.
- W4384080276 cites W2603490707 @default.
- W4384080276 cites W2606228039 @default.
- W4384080276 cites W2619720754 @default.
- W4384080276 cites W2620806708 @default.
- W4384080276 cites W2725456721 @default.
- W4384080276 cites W2736081097 @default.
- W4384080276 cites W2753446035 @default.
- W4384080276 cites W2756425885 @default.
- W4384080276 cites W2775650215 @default.
- W4384080276 cites W2791819516 @default.
- W4384080276 cites W2793019582 @default.
- W4384080276 cites W2793694534 @default.
- W4384080276 cites W2799687171 @default.
- W4384080276 cites W2855469196 @default.
- W4384080276 cites W2885839206 @default.
- W4384080276 cites W2886698364 @default.
- W4384080276 cites W2888342366 @default.
- W4384080276 cites W2888487581 @default.
- W4384080276 cites W2890296049 @default.
- W4384080276 cites W2897042075 @default.
- W4384080276 cites W2907756624 @default.
- W4384080276 cites W2910628329 @default.
- W4384080276 cites W2936059353 @default.
- W4384080276 cites W2938359531 @default.
- W4384080276 cites W2946723940 @default.
- W4384080276 cites W2947459187 @default.
- W4384080276 cites W2972441196 @default.
- W4384080276 cites W2973476477 @default.
- W4384080276 cites W2978725006 @default.
- W4384080276 cites W2979385261 @default.
- W4384080276 cites W2982702361 @default.