Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384080794> ?p ?o ?g. }
- W4384080794 endingPage "71527" @default.
- W4384080794 startingPage "71517" @default.
- W4384080794 abstract "As fake news spreads rapidly in social media, attempts to develop detection technology to automatically identify fake news are actively being developed, recently. However, most of them focus only on the linguistic and compositional characteristics of fake news (e.g., source or authors indication, length of a message, frequency of negative words). Compared to them, this study proposes a fake news detection model based on machine learning that reflects the characteristics of users, news content, and social networks based on social capital. To comprehensively reflect the characteristics related to the spread of fake news, this study applied the XGBoost model to estimate the feature importance of each variable to derive the priority factors that preferentially affect fake news detection. Based on the derived variables, we established SVM, RF, LR, CART, and NNET, which are representative classification models of machine learning, and compared the performance rate of fake news detection. To generalize the established models (i.e., to avoid overfitting or underfitting), this study performed a cross-validation step, and to compare the predictive accuracy of the established models. As a result, the RF model indicated the highest prediction rate at about 94%, while the NNET had the lowest performance rate at about 92.1%. The results of this study are expected to contribute to improve the fake news detection system in preparation for the more sophisticated generation and spread of fake news." @default.
- W4384080794 created "2023-07-13" @default.
- W4384080794 creator A5038729859 @default.
- W4384080794 creator A5045238286 @default.
- W4384080794 date "2023-01-01" @default.
- W4384080794 modified "2023-10-18" @default.
- W4384080794 title "Constructing a User-Centered Fake News Detection Model by Using Classification Algorithms in Machine Learning Techniques" @default.
- W4384080794 cites W1600653717 @default.
- W4384080794 cites W1814023381 @default.
- W4384080794 cites W1928223220 @default.
- W4384080794 cites W1969374879 @default.
- W4384080794 cites W1991194175 @default.
- W4384080794 cites W1999458239 @default.
- W4384080794 cites W2025894933 @default.
- W4384080794 cites W2041614930 @default.
- W4384080794 cites W2044933868 @default.
- W4384080794 cites W2068138600 @default.
- W4384080794 cites W2101196063 @default.
- W4384080794 cites W2108183214 @default.
- W4384080794 cites W2163020995 @default.
- W4384080794 cites W2248267741 @default.
- W4384080794 cites W2252350410 @default.
- W4384080794 cites W2410465342 @default.
- W4384080794 cites W2606665849 @default.
- W4384080794 cites W2751589903 @default.
- W4384080794 cites W2755135419 @default.
- W4384080794 cites W2759820691 @default.
- W4384080794 cites W2769470793 @default.
- W4384080794 cites W2791544114 @default.
- W4384080794 cites W2890523554 @default.
- W4384080794 cites W2903585380 @default.
- W4384080794 cites W2931508175 @default.
- W4384080794 cites W2963416784 @default.
- W4384080794 cites W2976875328 @default.
- W4384080794 cites W3028756896 @default.
- W4384080794 cites W3031781733 @default.
- W4384080794 cites W3094292485 @default.
- W4384080794 cites W3102476541 @default.
- W4384080794 cites W3120837814 @default.
- W4384080794 cites W3147795728 @default.
- W4384080794 cites W3182204087 @default.
- W4384080794 cites W4220979987 @default.
- W4384080794 cites W4223982309 @default.
- W4384080794 cites W4280574037 @default.
- W4384080794 cites W4285108532 @default.
- W4384080794 cites W4307948034 @default.
- W4384080794 doi "https://doi.org/10.1109/access.2023.3294613" @default.
- W4384080794 hasPublicationYear "2023" @default.
- W4384080794 type Work @default.
- W4384080794 citedByCount "0" @default.
- W4384080794 crossrefType "journal-article" @default.
- W4384080794 hasAuthorship W4384080794A5038729859 @default.
- W4384080794 hasAuthorship W4384080794A5045238286 @default.
- W4384080794 hasBestOaLocation W43840807941 @default.
- W4384080794 hasConcept C108827166 @default.
- W4384080794 hasConcept C110083411 @default.
- W4384080794 hasConcept C11413529 @default.
- W4384080794 hasConcept C119857082 @default.
- W4384080794 hasConcept C120665830 @default.
- W4384080794 hasConcept C121332964 @default.
- W4384080794 hasConcept C12267149 @default.
- W4384080794 hasConcept C134306372 @default.
- W4384080794 hasConcept C136764020 @default.
- W4384080794 hasConcept C138885662 @default.
- W4384080794 hasConcept C154945302 @default.
- W4384080794 hasConcept C182365436 @default.
- W4384080794 hasConcept C192209626 @default.
- W4384080794 hasConcept C22019652 @default.
- W4384080794 hasConcept C2776401178 @default.
- W4384080794 hasConcept C2779756789 @default.
- W4384080794 hasConcept C33923547 @default.
- W4384080794 hasConcept C41008148 @default.
- W4384080794 hasConcept C41895202 @default.
- W4384080794 hasConcept C50644808 @default.
- W4384080794 hasConcept C518677369 @default.
- W4384080794 hasConceptScore W4384080794C108827166 @default.
- W4384080794 hasConceptScore W4384080794C110083411 @default.
- W4384080794 hasConceptScore W4384080794C11413529 @default.
- W4384080794 hasConceptScore W4384080794C119857082 @default.
- W4384080794 hasConceptScore W4384080794C120665830 @default.
- W4384080794 hasConceptScore W4384080794C121332964 @default.
- W4384080794 hasConceptScore W4384080794C12267149 @default.
- W4384080794 hasConceptScore W4384080794C134306372 @default.
- W4384080794 hasConceptScore W4384080794C136764020 @default.
- W4384080794 hasConceptScore W4384080794C138885662 @default.
- W4384080794 hasConceptScore W4384080794C154945302 @default.
- W4384080794 hasConceptScore W4384080794C182365436 @default.
- W4384080794 hasConceptScore W4384080794C192209626 @default.
- W4384080794 hasConceptScore W4384080794C22019652 @default.
- W4384080794 hasConceptScore W4384080794C2776401178 @default.
- W4384080794 hasConceptScore W4384080794C2779756789 @default.
- W4384080794 hasConceptScore W4384080794C33923547 @default.
- W4384080794 hasConceptScore W4384080794C41008148 @default.
- W4384080794 hasConceptScore W4384080794C41895202 @default.
- W4384080794 hasConceptScore W4384080794C50644808 @default.
- W4384080794 hasConceptScore W4384080794C518677369 @default.
- W4384080794 hasFunder F4320321408 @default.
- W4384080794 hasFunder F4320322120 @default.