Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384080882> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W4384080882 endingPage "151" @default.
- W4384080882 startingPage "140" @default.
- W4384080882 abstract "Human gait data follows distinct and identifiable patterns that are critical for movement analysis and evaluation Like other biological signals. The success of a rehabilitation program is dependent on the execution of proper progress monitoring. To ensure success, diagnosis of gait anomalies, as well as the implementation of therapy to address them, must be validated in a constant and timely manner in developing youngsters. In this paper, machine learning techniques were utilized to classify foot diseases and the purpose is to increase the accuracy of disease detection and diagnosis because intelligent systems can contribute significantly in the medical field and have proven their worth in diagnosing many diseases. The results show high accuracy of the used machine learning algorithms, where the accuracy of the classifiers reached 100% for Random Forest (RF), Decision Tree (DT), and k-nearest neighbors (KNN), while it reached 98% for Logistic Regression. Index Terms—Biometrics, Machine Learning (ML), Drop foot (DF), Leg Rehabilitation, and Human gait." @default.
- W4384080882 created "2023-07-13" @default.
- W4384080882 date "2022-12-29" @default.
- W4384080882 modified "2023-09-28" @default.
- W4384080882 title "Machine Learning Approach Based on Automated Classification for Leg Rehabilitation" @default.
- W4384080882 doi "https://doi.org/10.33103/uot.ijccce.22.4.11" @default.
- W4384080882 hasPublicationYear "2022" @default.
- W4384080882 type Work @default.
- W4384080882 citedByCount "0" @default.
- W4384080882 crossrefType "journal-article" @default.
- W4384080882 hasBestOaLocation W43840808821 @default.
- W4384080882 hasConcept C119857082 @default.
- W4384080882 hasConcept C151800584 @default.
- W4384080882 hasConcept C151956035 @default.
- W4384080882 hasConcept C154945302 @default.
- W4384080882 hasConcept C169258074 @default.
- W4384080882 hasConcept C173906292 @default.
- W4384080882 hasConcept C184297639 @default.
- W4384080882 hasConcept C1862650 @default.
- W4384080882 hasConcept C2778818304 @default.
- W4384080882 hasConcept C41008148 @default.
- W4384080882 hasConcept C71924100 @default.
- W4384080882 hasConcept C84525736 @default.
- W4384080882 hasConcept C99508421 @default.
- W4384080882 hasConceptScore W4384080882C119857082 @default.
- W4384080882 hasConceptScore W4384080882C151800584 @default.
- W4384080882 hasConceptScore W4384080882C151956035 @default.
- W4384080882 hasConceptScore W4384080882C154945302 @default.
- W4384080882 hasConceptScore W4384080882C169258074 @default.
- W4384080882 hasConceptScore W4384080882C173906292 @default.
- W4384080882 hasConceptScore W4384080882C184297639 @default.
- W4384080882 hasConceptScore W4384080882C1862650 @default.
- W4384080882 hasConceptScore W4384080882C2778818304 @default.
- W4384080882 hasConceptScore W4384080882C41008148 @default.
- W4384080882 hasConceptScore W4384080882C71924100 @default.
- W4384080882 hasConceptScore W4384080882C84525736 @default.
- W4384080882 hasConceptScore W4384080882C99508421 @default.
- W4384080882 hasLocation W43840808821 @default.
- W4384080882 hasOpenAccess W4384080882 @default.
- W4384080882 hasPrimaryLocation W43840808821 @default.
- W4384080882 hasRelatedWork W3167700044 @default.
- W4384080882 hasRelatedWork W3204641204 @default.
- W4384080882 hasRelatedWork W4212963941 @default.
- W4384080882 hasRelatedWork W4239706975 @default.
- W4384080882 hasRelatedWork W4283016678 @default.
- W4384080882 hasRelatedWork W4283313480 @default.
- W4384080882 hasRelatedWork W4312707991 @default.
- W4384080882 hasRelatedWork W4321636153 @default.
- W4384080882 hasRelatedWork W4322731370 @default.
- W4384080882 hasRelatedWork W4366151905 @default.
- W4384080882 isParatext "false" @default.
- W4384080882 isRetracted "false" @default.
- W4384080882 workType "article" @default.