Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384080886> ?p ?o ?g. }
- W4384080886 endingPage "75817" @default.
- W4384080886 startingPage "75794" @default.
- W4384080886 abstract "Rescheduling is essential in real-world production to adjust schedules when significant disturbances render existing ones non-optimal. Manufacturers are often required to reschedule production tasks as quickly as possible. This paper proposes a rapid production rescheduling framework for flow shop under machine failure disturbance, called PPGA-ANNs, with the goal of minimizing makespan while ensuring sufficient computational efficiency. The framework begins with a scheduling knowledge creation phase conducted before starting production. It applies the proposed Perturbation Population Genetic Algorithm (PPGA) to solve generated scenarios of flow shop production with machine failure problems. The performance of the PPGA is compared to other research algorithms and to the standard genetic algorithm (GA). The same data set from a widely used scheduling benchmark is used for all algorithms to confirm the effectiveness of the PPGA. Artificial neural networks (ANNs) are then applied to store the scheduling knowledge obtained from the PPGA. In the knowledge implementation phase, when a machine failure problem occurs during production, the rescheduling solution is provided by the ANNs if the machine failure problem is identical to a generated scenario. Otherwise, the rescheduling solution is provided by the PPGA, using the initial solution obtained from the ANNs. Based on the experimental results, the PPGA-ANNs framework demonstrates better performance in makespans than benchmark algorithms. Additionally, it provides faster solutions, particularly for new machine failure problems. In conclusion, the proposed framework is capable of minimizing the makespan with a short computational time for real-world production, addressing the limitations of existing state-of-the-art meta-heuristic algorithms." @default.
- W4384080886 created "2023-07-13" @default.
- W4384080886 creator A5006198149 @default.
- W4384080886 creator A5040951125 @default.
- W4384080886 creator A5047779357 @default.
- W4384080886 creator A5067088014 @default.
- W4384080886 date "2023-01-01" @default.
- W4384080886 modified "2023-09-26" @default.
- W4384080886 title "Rapid Production Rescheduling for Flow Shop Under Machine Failure Disturbance Using Hybrid Perturbation Population Genetic Algorithm-Artificial Neural Networks (PPGA-ANNs)" @default.
- W4384080886 cites W1499199352 @default.
- W4384080886 cites W1915139648 @default.
- W4384080886 cites W1967857375 @default.
- W4384080886 cites W1968535060 @default.
- W4384080886 cites W1974226167 @default.
- W4384080886 cites W1988310455 @default.
- W4384080886 cites W1990771923 @default.
- W4384080886 cites W2001905549 @default.
- W4384080886 cites W2002917695 @default.
- W4384080886 cites W2003746847 @default.
- W4384080886 cites W2013673014 @default.
- W4384080886 cites W2024085737 @default.
- W4384080886 cites W2037808394 @default.
- W4384080886 cites W2042738557 @default.
- W4384080886 cites W2043386117 @default.
- W4384080886 cites W2056025917 @default.
- W4384080886 cites W2059073981 @default.
- W4384080886 cites W2062141640 @default.
- W4384080886 cites W2088876013 @default.
- W4384080886 cites W2090069860 @default.
- W4384080886 cites W2092466445 @default.
- W4384080886 cites W2094198194 @default.
- W4384080886 cites W2095295340 @default.
- W4384080886 cites W2100131857 @default.
- W4384080886 cites W2117473144 @default.
- W4384080886 cites W2156391157 @default.
- W4384080886 cites W2157846217 @default.
- W4384080886 cites W2262063692 @default.
- W4384080886 cites W2305203104 @default.
- W4384080886 cites W2336132158 @default.
- W4384080886 cites W2516921826 @default.
- W4384080886 cites W2754679757 @default.
- W4384080886 cites W2754918304 @default.
- W4384080886 cites W2800715889 @default.
- W4384080886 cites W2886663814 @default.
- W4384080886 cites W2887386074 @default.
- W4384080886 cites W2899091276 @default.
- W4384080886 cites W2903917088 @default.
- W4384080886 cites W2936641013 @default.
- W4384080886 cites W2968706380 @default.
- W4384080886 cites W3034462283 @default.
- W4384080886 cites W3083951899 @default.
- W4384080886 cites W3086457643 @default.
- W4384080886 cites W3093212681 @default.
- W4384080886 cites W3094704314 @default.
- W4384080886 cites W3119051141 @default.
- W4384080886 cites W3128881933 @default.
- W4384080886 cites W3162393006 @default.
- W4384080886 cites W3163767957 @default.
- W4384080886 cites W3166811342 @default.
- W4384080886 cites W3169276149 @default.
- W4384080886 cites W3182016264 @default.
- W4384080886 cites W3196402541 @default.
- W4384080886 cites W4205534337 @default.
- W4384080886 cites W4255654664 @default.
- W4384080886 doi "https://doi.org/10.1109/access.2023.3294573" @default.
- W4384080886 hasPublicationYear "2023" @default.
- W4384080886 type Work @default.
- W4384080886 citedByCount "0" @default.
- W4384080886 crossrefType "journal-article" @default.
- W4384080886 hasAuthorship W4384080886A5006198149 @default.
- W4384080886 hasAuthorship W4384080886A5040951125 @default.
- W4384080886 hasAuthorship W4384080886A5047779357 @default.
- W4384080886 hasAuthorship W4384080886A5067088014 @default.
- W4384080886 hasBestOaLocation W43840808861 @default.
- W4384080886 hasConcept C111919701 @default.
- W4384080886 hasConcept C11413529 @default.
- W4384080886 hasConcept C119857082 @default.
- W4384080886 hasConcept C126255220 @default.
- W4384080886 hasConcept C13280743 @default.
- W4384080886 hasConcept C144024400 @default.
- W4384080886 hasConcept C149923435 @default.
- W4384080886 hasConcept C154945302 @default.
- W4384080886 hasConcept C158336966 @default.
- W4384080886 hasConcept C185798385 @default.
- W4384080886 hasConcept C205649164 @default.
- W4384080886 hasConcept C206729178 @default.
- W4384080886 hasConcept C2908647359 @default.
- W4384080886 hasConcept C33923547 @default.
- W4384080886 hasConcept C41008148 @default.
- W4384080886 hasConcept C50644808 @default.
- W4384080886 hasConcept C55416958 @default.
- W4384080886 hasConcept C68387754 @default.
- W4384080886 hasConcept C8880873 @default.
- W4384080886 hasConceptScore W4384080886C111919701 @default.
- W4384080886 hasConceptScore W4384080886C11413529 @default.
- W4384080886 hasConceptScore W4384080886C119857082 @default.
- W4384080886 hasConceptScore W4384080886C126255220 @default.
- W4384080886 hasConceptScore W4384080886C13280743 @default.