Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384103669> ?p ?o ?g. }
- W4384103669 endingPage "105239" @default.
- W4384103669 startingPage "105239" @default.
- W4384103669 abstract "Discrimination of normal and adventitious respiratory sounds from stethoscope auscultation by human ears is challenging owing to low frequency characteristics and varying frequency range for inspiration and expiration. This makes the diagnosis of pulmonary disorders a subjective one relying on the experience and hearing capability of the physician. Most computer assisted diagnosis systems formulated to address these limitations fail to capture the inherent acoustic property of respiratory sounds close to human auditory system. To circumvent this problem, this study exploits the gammatone filter banks to evaluate the distribution of all frequency components present in the signal. To categorize the respiratory signals, GoogLeNet based Convolutional Neural Networks (CNN) prediction model is developed through Time-Frequency (TF) visualization of gammatone cepstral coefficients acquired from decomposed Intrinsic Mode Functions (IMFs) in an empirical manner. As the performance of the CNN model is greatly dependent on the learning environment, this study also tends to optimize the values of the hyper parameters to enhance the classification performance of the CNN model. Accordingly, the optimal values of initial learning rate, L2 regularization and momentum are identified for both Stochastic Gradient Descent Momentum (SGDM) and Adaptive Momentum (ADAM) optimizer using Bayesian optimization technique. Experimentation is carried out for three TF visualization methods viz. spectrograms, scalograms and Constant Q spectrograms. Evaluated results show that scalogram method of classification yields high accuracy of 87.37% and 88.32% for default selection of hyperparameters using SGDM and ADAM optimizers and with optimal selection of hyperparameters based on objective function reveal an improved accuracy of 93.68 % and 95.67% for SGDM and ADAM optimizers." @default.
- W4384103669 created "2023-07-13" @default.
- W4384103669 creator A5038835621 @default.
- W4384103669 creator A5048591674 @default.
- W4384103669 creator A5066778530 @default.
- W4384103669 date "2023-09-01" @default.
- W4384103669 modified "2023-10-16" @default.
- W4384103669 title "Bayesian optimized GoogLeNet based respiratory signal prediction model from empirically decomposed gammatone visualization" @default.
- W4384103669 cites W1513801117 @default.
- W4384103669 cites W1978274651 @default.
- W4384103669 cites W1980128308 @default.
- W4384103669 cites W1988187084 @default.
- W4384103669 cites W2007221293 @default.
- W4384103669 cites W2022137338 @default.
- W4384103669 cites W2047469300 @default.
- W4384103669 cites W2057757994 @default.
- W4384103669 cites W2097117768 @default.
- W4384103669 cites W2150455640 @default.
- W4384103669 cites W2170748564 @default.
- W4384103669 cites W2560360754 @default.
- W4384103669 cites W2592012518 @default.
- W4384103669 cites W2775829694 @default.
- W4384103669 cites W2801920224 @default.
- W4384103669 cites W2826306652 @default.
- W4384103669 cites W2899493363 @default.
- W4384103669 cites W2901486635 @default.
- W4384103669 cites W2912223386 @default.
- W4384103669 cites W2946595724 @default.
- W4384103669 cites W3002644008 @default.
- W4384103669 cites W3092389862 @default.
- W4384103669 cites W3107425599 @default.
- W4384103669 cites W3107962736 @default.
- W4384103669 cites W3116715673 @default.
- W4384103669 cites W3118765838 @default.
- W4384103669 cites W3119735026 @default.
- W4384103669 cites W3126154525 @default.
- W4384103669 cites W3179217820 @default.
- W4384103669 cites W3186014488 @default.
- W4384103669 cites W3199069548 @default.
- W4384103669 cites W3207400687 @default.
- W4384103669 cites W325562896 @default.
- W4384103669 cites W4200264153 @default.
- W4384103669 cites W4206067856 @default.
- W4384103669 cites W4223448033 @default.
- W4384103669 cites W4225585097 @default.
- W4384103669 cites W4289792337 @default.
- W4384103669 cites W4309947341 @default.
- W4384103669 cites W225464479 @default.
- W4384103669 doi "https://doi.org/10.1016/j.bspc.2023.105239" @default.
- W4384103669 hasPublicationYear "2023" @default.
- W4384103669 type Work @default.
- W4384103669 citedByCount "0" @default.
- W4384103669 crossrefType "journal-article" @default.
- W4384103669 hasAuthorship W4384103669A5038835621 @default.
- W4384103669 hasAuthorship W4384103669A5048591674 @default.
- W4384103669 hasAuthorship W4384103669A5066778530 @default.
- W4384103669 hasConcept C126838900 @default.
- W4384103669 hasConcept C13895895 @default.
- W4384103669 hasConcept C153180895 @default.
- W4384103669 hasConcept C154945302 @default.
- W4384103669 hasConcept C2778049539 @default.
- W4384103669 hasConcept C2779055095 @default.
- W4384103669 hasConcept C28490314 @default.
- W4384103669 hasConcept C36464697 @default.
- W4384103669 hasConcept C41008148 @default.
- W4384103669 hasConcept C45273575 @default.
- W4384103669 hasConcept C64922751 @default.
- W4384103669 hasConcept C71924100 @default.
- W4384103669 hasConcept C81363708 @default.
- W4384103669 hasConcept C8642999 @default.
- W4384103669 hasConceptScore W4384103669C126838900 @default.
- W4384103669 hasConceptScore W4384103669C13895895 @default.
- W4384103669 hasConceptScore W4384103669C153180895 @default.
- W4384103669 hasConceptScore W4384103669C154945302 @default.
- W4384103669 hasConceptScore W4384103669C2778049539 @default.
- W4384103669 hasConceptScore W4384103669C2779055095 @default.
- W4384103669 hasConceptScore W4384103669C28490314 @default.
- W4384103669 hasConceptScore W4384103669C36464697 @default.
- W4384103669 hasConceptScore W4384103669C41008148 @default.
- W4384103669 hasConceptScore W4384103669C45273575 @default.
- W4384103669 hasConceptScore W4384103669C64922751 @default.
- W4384103669 hasConceptScore W4384103669C71924100 @default.
- W4384103669 hasConceptScore W4384103669C81363708 @default.
- W4384103669 hasConceptScore W4384103669C8642999 @default.
- W4384103669 hasLocation W43841036691 @default.
- W4384103669 hasOpenAccess W4384103669 @default.
- W4384103669 hasPrimaryLocation W43841036691 @default.
- W4384103669 hasRelatedWork W2767651786 @default.
- W4384103669 hasRelatedWork W2907228390 @default.
- W4384103669 hasRelatedWork W2912288872 @default.
- W4384103669 hasRelatedWork W2936488316 @default.
- W4384103669 hasRelatedWork W3091785813 @default.
- W4384103669 hasRelatedWork W3199608561 @default.
- W4384103669 hasRelatedWork W4304182771 @default.
- W4384103669 hasRelatedWork W4384103669 @default.
- W4384103669 hasRelatedWork W4386402874 @default.
- W4384103669 hasRelatedWork W564581980 @default.
- W4384103669 hasVolume "86" @default.