Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384103802> ?p ?o ?g. }
- W4384103802 endingPage "107369" @default.
- W4384103802 startingPage "107369" @default.
- W4384103802 abstract "Soil organic carbon (SOC) plays a key role in soil function, ecosystem services, and the global carbon cycle. Large SOC stocks accumulate in agroecosystems, but the estimates of SOC distribution and magnitude in agroecosystems still have large uncertainties in global products. Based on multiple high-resolution environmental variables (terrain derived from digital elevation model, climate and organism from Landsat 8 OLI) and 369 observed soil samples from 2019 to 2021, two machine learning methods, random forest (RF) and support vector machine (SVM) models, were used to estimate the content and spatial distribution of SOC in agroecosystems of Eastern China. We proposed a hybrid model in which the optimal predictors of SOC were selected for different land use types (cropland, planted forest and grassland), and it aimed to improve the performance of machine learning. Our results showed that (1) the hybrid models performed better than the global models, and the Random forest-Hybrid (RF-Hybrid) model led to the highest prediction accuracy, with a validation R2 of 0.65 and RMSE of 5.76 g kg−1. (2) The SOC content in the agroecosystems of Eastern China among different land use types ranked in the following order: planted forest (19.92 g kg−1) > cropland (17.51 g kg−1) > grassland (17.30 g kg−1). However, in North China, the SOC content in cropland (14.04 g kg−1) was much lower than that in planted forest (17.21 g kg−1) and grassland (17.07 g kg−1), which was caused by excessive mechanized operation. (3) The agroecosystem in Northeast China presented the highest mean SOC content (26.55 g kg−1) due to low temperature. (4) Our estimations (R2 = 0.53, RMSE = 6.74 g kg−1, 30-m resolution) were more detailed and precise than the existing global SOC maps (Soil Grids: R2 = 0.26, RMSE = 12.44 g kg−1, 250-m resolution; HWSD: R2 = 0.06, RMSE = 41.07 g kg−1, 1000-m resolution). The results may improve the accuracy of agroecosystem carbon mapping and contribute to SOC assessments in agricultural ecosystems." @default.
- W4384103802 created "2023-07-13" @default.
- W4384103802 creator A5003269740 @default.
- W4384103802 creator A5034134503 @default.
- W4384103802 creator A5044345778 @default.
- W4384103802 creator A5048845021 @default.
- W4384103802 creator A5052787170 @default.
- W4384103802 creator A5059565760 @default.
- W4384103802 date "2023-10-01" @default.
- W4384103802 modified "2023-10-06" @default.
- W4384103802 title "Remote estimation of soil organic carbon under different land use types in agroecosystems of Eastern China" @default.
- W4384103802 cites W1124184334 @default.
- W4384103802 cites W1848280214 @default.
- W4384103802 cites W2003405841 @default.
- W4384103802 cites W2010212234 @default.
- W4384103802 cites W2014461778 @default.
- W4384103802 cites W2045641952 @default.
- W4384103802 cites W2052289430 @default.
- W4384103802 cites W2053892674 @default.
- W4384103802 cites W2072751749 @default.
- W4384103802 cites W2144189317 @default.
- W4384103802 cites W2162686899 @default.
- W4384103802 cites W2253490924 @default.
- W4384103802 cites W2292439029 @default.
- W4384103802 cites W2588003345 @default.
- W4384103802 cites W2752703078 @default.
- W4384103802 cites W2761659736 @default.
- W4384103802 cites W2774174446 @default.
- W4384103802 cites W2885575998 @default.
- W4384103802 cites W2885835777 @default.
- W4384103802 cites W2893301845 @default.
- W4384103802 cites W2904605960 @default.
- W4384103802 cites W2905192710 @default.
- W4384103802 cites W2911964244 @default.
- W4384103802 cites W2953121833 @default.
- W4384103802 cites W2957520121 @default.
- W4384103802 cites W2976738364 @default.
- W4384103802 cites W2997202474 @default.
- W4384103802 cites W3008104495 @default.
- W4384103802 cites W3033264856 @default.
- W4384103802 cites W3036767730 @default.
- W4384103802 cites W3080159916 @default.
- W4384103802 cites W3082119362 @default.
- W4384103802 cites W3095698552 @default.
- W4384103802 cites W3137470450 @default.
- W4384103802 cites W3156196697 @default.
- W4384103802 cites W3165870068 @default.
- W4384103802 cites W3179680569 @default.
- W4384103802 cites W3188524028 @default.
- W4384103802 cites W3207227533 @default.
- W4384103802 cites W3207951013 @default.
- W4384103802 cites W3208844859 @default.
- W4384103802 cites W3209480458 @default.
- W4384103802 cites W3215993684 @default.
- W4384103802 cites W4210486501 @default.
- W4384103802 cites W4212903823 @default.
- W4384103802 cites W4213075654 @default.
- W4384103802 cites W4220791703 @default.
- W4384103802 cites W4220903361 @default.
- W4384103802 cites W4221100539 @default.
- W4384103802 cites W4223939479 @default.
- W4384103802 cites W4286268625 @default.
- W4384103802 cites W4288679882 @default.
- W4384103802 cites W4293026707 @default.
- W4384103802 cites W4293577751 @default.
- W4384103802 cites W4294884784 @default.
- W4384103802 cites W4297110361 @default.
- W4384103802 cites W4298008394 @default.
- W4384103802 cites W4302024526 @default.
- W4384103802 cites W4304172201 @default.
- W4384103802 cites W4309079829 @default.
- W4384103802 cites W4309346273 @default.
- W4384103802 cites W4310784582 @default.
- W4384103802 cites W4317933772 @default.
- W4384103802 cites W4319069054 @default.
- W4384103802 cites W4321172403 @default.
- W4384103802 cites W4322487461 @default.
- W4384103802 cites W4323073293 @default.
- W4384103802 doi "https://doi.org/10.1016/j.catena.2023.107369" @default.
- W4384103802 hasPublicationYear "2023" @default.
- W4384103802 type Work @default.
- W4384103802 citedByCount "1" @default.
- W4384103802 countsByYear W43841038022023 @default.
- W4384103802 crossrefType "journal-article" @default.
- W4384103802 hasAuthorship W4384103802A5003269740 @default.
- W4384103802 hasAuthorship W4384103802A5034134503 @default.
- W4384103802 hasAuthorship W4384103802A5044345778 @default.
- W4384103802 hasAuthorship W4384103802A5048845021 @default.
- W4384103802 hasAuthorship W4384103802A5052787170 @default.
- W4384103802 hasAuthorship W4384103802A5059565760 @default.
- W4384103802 hasConcept C118518473 @default.
- W4384103802 hasConcept C119857082 @default.
- W4384103802 hasConcept C159390177 @default.
- W4384103802 hasConcept C159750122 @default.
- W4384103802 hasConcept C161840515 @default.
- W4384103802 hasConcept C169258074 @default.
- W4384103802 hasConcept C18903297 @default.
- W4384103802 hasConcept C205649164 @default.