Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384111504> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4384111504 abstract "High-dimensional spectral data -- routinely generated in dairy production -- are used to predict a range of traits in milk products. Partial least squares regression (PLSR) is ubiquitously used for these prediction tasks. However PLSR is not typically viewed as arising from statistical inference of a probabilistic model, and parameter uncertainty is rarely quantified. Additionally, PLSR does not easily lend itself to model-based modifications, coherent prediction intervals are not readily available, and the process of choosing the latent-space dimension, $mathtt{Q}$, can be subjective and sensitive to data size. We introduce a Bayesian latent-variable model, emulating the desirable properties of PLSR while accounting for parameter uncertainty. The need to choose $mathtt{Q}$ is eschewed through a nonparametric shrinkage prior. The flexibility of the proposed Bayesian partial least squares regression (BPLSR) framework is exemplified by considering sparsity modifications and allowing for multivariate response prediction. The BPLSR framework is used in two motivating settings: 1) trait prediction from mid-infrared spectral analyses of milk samples, and 2) milk pH prediction from surface-enhanced Raman spectral data. The prediction performance of BPLSR at least matches that of PLSR. Additionally, the provision of correctly calibrated prediction intervals objectively provides richer, more informative inference for stakeholders in dairy production." @default.
- W4384111504 created "2023-07-13" @default.
- W4384111504 creator A5030331060 @default.
- W4384111504 creator A5033894652 @default.
- W4384111504 creator A5033957848 @default.
- W4384111504 creator A5037849126 @default.
- W4384111504 creator A5049795579 @default.
- W4384111504 creator A5080330756 @default.
- W4384111504 date "2023-07-10" @default.
- W4384111504 modified "2023-09-27" @default.
- W4384111504 title "Predicting milk traits from spectral data using Bayesian probabilistic partial least squares regression" @default.
- W4384111504 doi "https://doi.org/10.48550/arxiv.2307.04457" @default.
- W4384111504 hasPublicationYear "2023" @default.
- W4384111504 type Work @default.
- W4384111504 citedByCount "0" @default.
- W4384111504 crossrefType "posted-content" @default.
- W4384111504 hasAuthorship W4384111504A5030331060 @default.
- W4384111504 hasAuthorship W4384111504A5033894652 @default.
- W4384111504 hasAuthorship W4384111504A5033957848 @default.
- W4384111504 hasAuthorship W4384111504A5037849126 @default.
- W4384111504 hasAuthorship W4384111504A5049795579 @default.
- W4384111504 hasAuthorship W4384111504A5080330756 @default.
- W4384111504 hasBestOaLocation W43841115041 @default.
- W4384111504 hasConcept C105795698 @default.
- W4384111504 hasConcept C107673813 @default.
- W4384111504 hasConcept C149782125 @default.
- W4384111504 hasConcept C152877465 @default.
- W4384111504 hasConcept C154945302 @default.
- W4384111504 hasConcept C161584116 @default.
- W4384111504 hasConcept C202444582 @default.
- W4384111504 hasConcept C22354355 @default.
- W4384111504 hasConcept C2776214188 @default.
- W4384111504 hasConcept C33676613 @default.
- W4384111504 hasConcept C33923547 @default.
- W4384111504 hasConcept C41008148 @default.
- W4384111504 hasConcept C49937458 @default.
- W4384111504 hasConcept C51167844 @default.
- W4384111504 hasConcept C83546350 @default.
- W4384111504 hasConceptScore W4384111504C105795698 @default.
- W4384111504 hasConceptScore W4384111504C107673813 @default.
- W4384111504 hasConceptScore W4384111504C149782125 @default.
- W4384111504 hasConceptScore W4384111504C152877465 @default.
- W4384111504 hasConceptScore W4384111504C154945302 @default.
- W4384111504 hasConceptScore W4384111504C161584116 @default.
- W4384111504 hasConceptScore W4384111504C202444582 @default.
- W4384111504 hasConceptScore W4384111504C22354355 @default.
- W4384111504 hasConceptScore W4384111504C2776214188 @default.
- W4384111504 hasConceptScore W4384111504C33676613 @default.
- W4384111504 hasConceptScore W4384111504C33923547 @default.
- W4384111504 hasConceptScore W4384111504C41008148 @default.
- W4384111504 hasConceptScore W4384111504C49937458 @default.
- W4384111504 hasConceptScore W4384111504C51167844 @default.
- W4384111504 hasConceptScore W4384111504C83546350 @default.
- W4384111504 hasLocation W43841115041 @default.
- W4384111504 hasOpenAccess W4384111504 @default.
- W4384111504 hasPrimaryLocation W43841115041 @default.
- W4384111504 hasRelatedWork W2044948028 @default.
- W4384111504 hasRelatedWork W2058044556 @default.
- W4384111504 hasRelatedWork W2070038302 @default.
- W4384111504 hasRelatedWork W2361916370 @default.
- W4384111504 hasRelatedWork W2375721435 @default.
- W4384111504 hasRelatedWork W2386886284 @default.
- W4384111504 hasRelatedWork W2792619933 @default.
- W4384111504 hasRelatedWork W2999452362 @default.
- W4384111504 hasRelatedWork W3021457118 @default.
- W4384111504 hasRelatedWork W4367303981 @default.
- W4384111504 isParatext "false" @default.
- W4384111504 isRetracted "false" @default.
- W4384111504 workType "article" @default.