Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384119804> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4384119804 endingPage "3922" @default.
- W4384119804 startingPage "3913" @default.
- W4384119804 abstract "A quantitative understanding of cropland nitrogen (N) runoff loss is critical for developing efficient N pollution control strategies. Using correlation analysis, a structural equation model, variance decomposition, and machine learning methods, this study identified the primary influencing factors of total N (TN) runoff loss from uplands (n=570) and paddy (n=434) fields in the Yangtze River Basin (YRB) and then developed a machine learning-based prediction model to quantify cropland N runoff loss load. The results indicated that runoff depth, soil N content, and fertilizer addition rate were the major influencing factors of TN runoff loss from uplands, whereas TN runoff loss rate from paddy fields was mainly regulated by runoff depth and fertilizer addition rate. Among the four used machine learning methods, the prediction models based on the random forest algorithm presented the highest accuracy (R2=0.65-0.94) for predicting upland and paddy field TN runoff loss rates. The random forest algorithm based model estimated a total cropland TN loss load in the YRB of 0.47 Tg·a-1 (upland:0.25 Tg·a-1; paddy field:0.22 Tg·a-1) in 2013, with 58% of TN runoff loss load derived from the midstream and downstream regions. The models predicted that TN runoff loss loads from croplands in YRB would decrease by 2.4%-9.3% for five scenarios, with higher TN load reductions occurring from scenarios with decreased runoff amounts. To mitigate cropland N nonpoint source pollution in YRB, it is essential to integrate efficient water, fertilizer, and soil nutrient managements as well as to consider the midstream and downstream regions as the high priority area. The machine learning-based modeling method developed in this study overcame the difficulty of identifying the functional relationships between cropland TN loss rate and multiple influencing factors in developing relevant prediction models, providing a reliable method for estimating regional and watershed cropland TN loss load." @default.
- W4384119804 created "2023-07-14" @default.
- W4384119804 creator A5009935409 @default.
- W4384119804 creator A5084697396 @default.
- W4384119804 creator A5091095473 @default.
- W4384119804 date "2023-07-08" @default.
- W4384119804 modified "2023-09-24" @default.
- W4384119804 title "[Estimation of Cropland Nitrogen Runoff Loss Loads in the Yangtze River Basin Based on the Machine Learning Approaches]." @default.
- W4384119804 doi "https://doi.org/10.13227/j.hjkx.202208129" @default.
- W4384119804 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37438290" @default.
- W4384119804 hasPublicationYear "2023" @default.
- W4384119804 type Work @default.
- W4384119804 citedByCount "0" @default.
- W4384119804 crossrefType "journal-article" @default.
- W4384119804 hasAuthorship W4384119804A5009935409 @default.
- W4384119804 hasAuthorship W4384119804A5084697396 @default.
- W4384119804 hasAuthorship W4384119804A5091095473 @default.
- W4384119804 hasConcept C124203675 @default.
- W4384119804 hasConcept C126645576 @default.
- W4384119804 hasConcept C127313418 @default.
- W4384119804 hasConcept C159390177 @default.
- W4384119804 hasConcept C179006392 @default.
- W4384119804 hasConcept C187320778 @default.
- W4384119804 hasConcept C18903297 @default.
- W4384119804 hasConcept C205649164 @default.
- W4384119804 hasConcept C2780560099 @default.
- W4384119804 hasConcept C39432304 @default.
- W4384119804 hasConcept C50477045 @default.
- W4384119804 hasConcept C521259446 @default.
- W4384119804 hasConcept C58640448 @default.
- W4384119804 hasConcept C6557445 @default.
- W4384119804 hasConcept C76886044 @default.
- W4384119804 hasConcept C85582077 @default.
- W4384119804 hasConcept C86803240 @default.
- W4384119804 hasConceptScore W4384119804C124203675 @default.
- W4384119804 hasConceptScore W4384119804C126645576 @default.
- W4384119804 hasConceptScore W4384119804C127313418 @default.
- W4384119804 hasConceptScore W4384119804C159390177 @default.
- W4384119804 hasConceptScore W4384119804C179006392 @default.
- W4384119804 hasConceptScore W4384119804C187320778 @default.
- W4384119804 hasConceptScore W4384119804C18903297 @default.
- W4384119804 hasConceptScore W4384119804C205649164 @default.
- W4384119804 hasConceptScore W4384119804C2780560099 @default.
- W4384119804 hasConceptScore W4384119804C39432304 @default.
- W4384119804 hasConceptScore W4384119804C50477045 @default.
- W4384119804 hasConceptScore W4384119804C521259446 @default.
- W4384119804 hasConceptScore W4384119804C58640448 @default.
- W4384119804 hasConceptScore W4384119804C6557445 @default.
- W4384119804 hasConceptScore W4384119804C76886044 @default.
- W4384119804 hasConceptScore W4384119804C85582077 @default.
- W4384119804 hasConceptScore W4384119804C86803240 @default.
- W4384119804 hasIssue "7" @default.
- W4384119804 hasLocation W43841198041 @default.
- W4384119804 hasOpenAccess W4384119804 @default.
- W4384119804 hasPrimaryLocation W43841198041 @default.
- W4384119804 hasRelatedWork W146018078 @default.
- W4384119804 hasRelatedWork W2055705976 @default.
- W4384119804 hasRelatedWork W2361750005 @default.
- W4384119804 hasRelatedWork W2375592271 @default.
- W4384119804 hasRelatedWork W2376674468 @default.
- W4384119804 hasRelatedWork W2392512544 @default.
- W4384119804 hasRelatedWork W2466298210 @default.
- W4384119804 hasRelatedWork W2736709835 @default.
- W4384119804 hasRelatedWork W2906158200 @default.
- W4384119804 hasRelatedWork W2139679407 @default.
- W4384119804 hasVolume "44" @default.
- W4384119804 isParatext "false" @default.
- W4384119804 isRetracted "false" @default.
- W4384119804 workType "article" @default.