Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384126763> ?p ?o ?g. }
- W4384126763 abstract "To assess the performance and generalizability of a convolutional neural network (CNN) model for objective and high-throughput identification of primary angle-closure disease (PACD) as well as PACD stage differentiation on anterior segment swept-source OCT (AS-OCT).Cross-sectional.Patients from 3 different eye centers across China and Singapore were recruited for this study. Eight hundred forty-one eyes from the 2 Chinese centers were divided into 170 control eyes, 488 PACS, and 183 PAC + PACG eyes. An additional 300 eyes were recruited from Singapore National Eye Center as a testing data set, divided into 100 control eyes, 100 PACS, and 100 PAC + PACG eyes.Each participant underwent standardized ophthalmic examination and was classified by the presiding physician as either control, primary angle-closure suspect (PACS), primary angle closure (PAC), or primary angle-closure glaucoma (PACG). Deep Learning model was used to train 3 different CNN classifiers: classifier 1 aimed to separate control versus PACS versus PAC + PACG; classifier 2 aimed to separate control versus PACD; and classifier 3 aimed to separate PACS versus PAC + PACG. All classifiers were evaluated on independent validation sets from the same region, China and further tested using data from a different country, Singapore.Area under receiver operator characteristic curve (AUC), precision, and recall.Classifier 1 achieved an AUC of 0.96 on validation set from the same region, but dropped to an AUC of 0.84 on test set from a different country. Classifier 2 achieved the most generalizable performance with an AUC of 0.96 on validation set and AUC of 0.95 on test set. Classifier 3 showed the poorest performance, with an AUC of 0.83 and 0.64 on test and validation data sets, respectively.Convolutional neural network classifiers can effectively distinguish PACD from controls on AS-OCT with good generalizability across different patient cohorts. However, their performance is moderate when trying to distinguish PACS versus PAC + PACG.The authors have no proprietary or commercial interest in any materials discussed in this article." @default.
- W4384126763 created "2023-07-14" @default.
- W4384126763 creator A5007927256 @default.
- W4384126763 creator A5014119394 @default.
- W4384126763 creator A5015914756 @default.
- W4384126763 creator A5018788953 @default.
- W4384126763 creator A5020056534 @default.
- W4384126763 creator A5022464374 @default.
- W4384126763 creator A5022810915 @default.
- W4384126763 creator A5033314475 @default.
- W4384126763 creator A5044348233 @default.
- W4384126763 creator A5052850959 @default.
- W4384126763 creator A5053555867 @default.
- W4384126763 creator A5054152032 @default.
- W4384126763 creator A5057053486 @default.
- W4384126763 creator A5080251127 @default.
- W4384126763 date "2023-07-01" @default.
- W4384126763 modified "2023-10-02" @default.
- W4384126763 title "Deep Learning Classification of Angle Closure based on Anterior Segment OCT" @default.
- W4384126763 cites W1990665179 @default.
- W4384126763 cites W2006340128 @default.
- W4384126763 cites W2014618991 @default.
- W4384126763 cites W2016476208 @default.
- W4384126763 cites W2031928583 @default.
- W4384126763 cites W2039327498 @default.
- W4384126763 cites W2042948570 @default.
- W4384126763 cites W2057266151 @default.
- W4384126763 cites W2061806768 @default.
- W4384126763 cites W2063625306 @default.
- W4384126763 cites W2072343577 @default.
- W4384126763 cites W2076086120 @default.
- W4384126763 cites W2136990481 @default.
- W4384126763 cites W2149126765 @default.
- W4384126763 cites W2155429661 @default.
- W4384126763 cites W2159132698 @default.
- W4384126763 cites W2160605010 @default.
- W4384126763 cites W2169176543 @default.
- W4384126763 cites W2208599910 @default.
- W4384126763 cites W2259275206 @default.
- W4384126763 cites W2883343666 @default.
- W4384126763 cites W2905810301 @default.
- W4384126763 cites W2919115771 @default.
- W4384126763 cites W2921900517 @default.
- W4384126763 cites W2969758564 @default.
- W4384126763 cites W3150212014 @default.
- W4384126763 cites W3152722141 @default.
- W4384126763 cites W3185647564 @default.
- W4384126763 cites W3194970959 @default.
- W4384126763 cites W4210689231 @default.
- W4384126763 doi "https://doi.org/10.1016/j.ogla.2023.06.011" @default.
- W4384126763 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37437884" @default.
- W4384126763 hasPublicationYear "2023" @default.
- W4384126763 type Work @default.
- W4384126763 citedByCount "0" @default.
- W4384126763 crossrefType "journal-article" @default.
- W4384126763 hasAuthorship W4384126763A5007927256 @default.
- W4384126763 hasAuthorship W4384126763A5014119394 @default.
- W4384126763 hasAuthorship W4384126763A5015914756 @default.
- W4384126763 hasAuthorship W4384126763A5018788953 @default.
- W4384126763 hasAuthorship W4384126763A5020056534 @default.
- W4384126763 hasAuthorship W4384126763A5022464374 @default.
- W4384126763 hasAuthorship W4384126763A5022810915 @default.
- W4384126763 hasAuthorship W4384126763A5033314475 @default.
- W4384126763 hasAuthorship W4384126763A5044348233 @default.
- W4384126763 hasAuthorship W4384126763A5052850959 @default.
- W4384126763 hasAuthorship W4384126763A5053555867 @default.
- W4384126763 hasAuthorship W4384126763A5054152032 @default.
- W4384126763 hasAuthorship W4384126763A5057053486 @default.
- W4384126763 hasAuthorship W4384126763A5080251127 @default.
- W4384126763 hasConcept C105795698 @default.
- W4384126763 hasConcept C118487528 @default.
- W4384126763 hasConcept C119767625 @default.
- W4384126763 hasConcept C119857082 @default.
- W4384126763 hasConcept C126322002 @default.
- W4384126763 hasConcept C153180895 @default.
- W4384126763 hasConcept C154945302 @default.
- W4384126763 hasConcept C27158222 @default.
- W4384126763 hasConcept C2778527774 @default.
- W4384126763 hasConcept C33923547 @default.
- W4384126763 hasConcept C41008148 @default.
- W4384126763 hasConcept C58471807 @default.
- W4384126763 hasConcept C71924100 @default.
- W4384126763 hasConcept C81363708 @default.
- W4384126763 hasConcept C95623464 @default.
- W4384126763 hasConceptScore W4384126763C105795698 @default.
- W4384126763 hasConceptScore W4384126763C118487528 @default.
- W4384126763 hasConceptScore W4384126763C119767625 @default.
- W4384126763 hasConceptScore W4384126763C119857082 @default.
- W4384126763 hasConceptScore W4384126763C126322002 @default.
- W4384126763 hasConceptScore W4384126763C153180895 @default.
- W4384126763 hasConceptScore W4384126763C154945302 @default.
- W4384126763 hasConceptScore W4384126763C27158222 @default.
- W4384126763 hasConceptScore W4384126763C2778527774 @default.
- W4384126763 hasConceptScore W4384126763C33923547 @default.
- W4384126763 hasConceptScore W4384126763C41008148 @default.
- W4384126763 hasConceptScore W4384126763C58471807 @default.
- W4384126763 hasConceptScore W4384126763C71924100 @default.
- W4384126763 hasConceptScore W4384126763C81363708 @default.
- W4384126763 hasConceptScore W4384126763C95623464 @default.
- W4384126763 hasLocation W43841267631 @default.