Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384129346> ?p ?o ?g. }
- W4384129346 endingPage "4669" @default.
- W4384129346 startingPage "4653" @default.
- W4384129346 abstract "ABSTRACT Using data from TNG300-2, we train a neural network (NN) to recreate the stellar mass (M*) and star formation rate (SFR) of central Galaxies in a dark-matter-only simulation. We conider 12 input properties from the halo and sub-halo hosting the galaxy and the near environment. M* predictions are robust, but the machine does not fully reproduce its scatter. The same happens for SFR, but the predictions are not as good as for M*. We chained NNs, improving the predictions on SFR to some extent. For SFR, we time-averaged this value between z = 0 and z = 0.1, which improved results for z = 0. Predictions of both variables have trouble reproducing values at lower and higher ends. We also study the impact of each input variable in the performance of the predictions using a leave-one-covariate-out approach, which led to insights about the physical and statistical relation between input variables. In terms of metrics, our machine outperforms similar studies, but the main discoveries in this work are not linked with the quality of the predictions themselves, but to how the predictions relate to the input variables. We find that previously studied relations between physical variables are meaningful to the machine. We also find that some merger tree properties strongly impact the performance of the machine. We conclude that machine learning models are useful tools to understand the significance of physical different properties and their impact on target characteristics, as well as strong candidates for potential simulation methods." @default.
- W4384129346 created "2023-07-14" @default.
- W4384129346 creator A5003096145 @default.
- W4384129346 creator A5040727635 @default.
- W4384129346 creator A5058324064 @default.
- W4384129346 date "2023-07-13" @default.
- W4384129346 modified "2023-10-09" @default.
- W4384129346 title "Not hydro: using neural networks to estimate galaxy properties on a dark-matter-only simulation" @default.
- W4384129346 cites W1520258040 @default.
- W4384129346 cites W1753342680 @default.
- W4384129346 cites W1840802971 @default.
- W4384129346 cites W1906992734 @default.
- W4384129346 cites W1929623410 @default.
- W4384129346 cites W1975549749 @default.
- W4384129346 cites W1986594271 @default.
- W4384129346 cites W2001068620 @default.
- W4384129346 cites W2012118946 @default.
- W4384129346 cites W2024897607 @default.
- W4384129346 cites W2032469582 @default.
- W4384129346 cites W2034241894 @default.
- W4384129346 cites W2035141004 @default.
- W4384129346 cites W2043685494 @default.
- W4384129346 cites W2056132907 @default.
- W4384129346 cites W2071208690 @default.
- W4384129346 cites W2073424199 @default.
- W4384129346 cites W2097144184 @default.
- W4384129346 cites W2098564368 @default.
- W4384129346 cites W2100514692 @default.
- W4384129346 cites W2115575809 @default.
- W4384129346 cites W2138747645 @default.
- W4384129346 cites W2141709306 @default.
- W4384129346 cites W2142619526 @default.
- W4384129346 cites W2143169117 @default.
- W4384129346 cites W2155889930 @default.
- W4384129346 cites W2167450417 @default.
- W4384129346 cites W2280547448 @default.
- W4384129346 cites W2327463114 @default.
- W4384129346 cites W2338337769 @default.
- W4384129346 cites W2468373122 @default.
- W4384129346 cites W2554959913 @default.
- W4384129346 cites W2581822982 @default.
- W4384129346 cites W2588509036 @default.
- W4384129346 cites W2600163159 @default.
- W4384129346 cites W2606720601 @default.
- W4384129346 cites W2734538553 @default.
- W4384129346 cites W2735189638 @default.
- W4384129346 cites W2735395126 @default.
- W4384129346 cites W2735531560 @default.
- W4384129346 cites W2735710795 @default.
- W4384129346 cites W2773149169 @default.
- W4384129346 cites W2783192224 @default.
- W4384129346 cites W2787779748 @default.
- W4384129346 cites W2804371831 @default.
- W4384129346 cites W2807722642 @default.
- W4384129346 cites W28412257 @default.
- W4384129346 cites W2904968505 @default.
- W4384129346 cites W2914193216 @default.
- W4384129346 cites W2953228579 @default.
- W4384129346 cites W2963146809 @default.
- W4384129346 cites W2970339633 @default.
- W4384129346 cites W3041436374 @default.
- W4384129346 cites W3048530372 @default.
- W4384129346 cites W3098140412 @default.
- W4384129346 cites W3098803289 @default.
- W4384129346 cites W3099841650 @default.
- W4384129346 cites W3100344990 @default.
- W4384129346 cites W3102406364 @default.
- W4384129346 cites W3103862143 @default.
- W4384129346 cites W3104062568 @default.
- W4384129346 cites W3105019629 @default.
- W4384129346 cites W3105306684 @default.
- W4384129346 cites W3105487447 @default.
- W4384129346 cites W3105517603 @default.
- W4384129346 cites W3106149202 @default.
- W4384129346 cites W3106430998 @default.
- W4384129346 cites W3106536789 @default.
- W4384129346 cites W3124353295 @default.
- W4384129346 cites W3125817276 @default.
- W4384129346 cites W3126379213 @default.
- W4384129346 cites W3138589548 @default.
- W4384129346 cites W3199648103 @default.
- W4384129346 cites W4205921721 @default.
- W4384129346 cites W4281823699 @default.
- W4384129346 cites W4282822400 @default.
- W4384129346 cites W4292875581 @default.
- W4384129346 doi "https://doi.org/10.1093/mnras/stad2112" @default.
- W4384129346 hasPublicationYear "2023" @default.
- W4384129346 type Work @default.
- W4384129346 citedByCount "0" @default.
- W4384129346 crossrefType "journal-article" @default.
- W4384129346 hasAuthorship W4384129346A5003096145 @default.
- W4384129346 hasAuthorship W4384129346A5040727635 @default.
- W4384129346 hasAuthorship W4384129346A5058324064 @default.
- W4384129346 hasBestOaLocation W43841293462 @default.
- W4384129346 hasConcept C119857082 @default.
- W4384129346 hasConcept C121332964 @default.
- W4384129346 hasConcept C121864883 @default.
- W4384129346 hasConcept C124101348 @default.