Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384129619> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4384129619 abstract "Nearly 15% of the adult American population are affected by Chronic Kidney Disease (CKD) according to the Center for Disease Control and Prevention (CDC). According to the National Institutes of Health (NIH), there are five stages of CKD, with each stage reflecting a different level of kidney function. In its early stages, CKD can often be asymptomatic. As a result, less than 10% of individuals are aware of having stage 1-3 CKD. Therefore, CKD is described as a silent killer for them. One common method of detecting and monitoring CKD is through blood or urine tests that measure biomarkers such as blood urea nitrogen (BUN), creatinine, or protein levels. However, these tests require patients to visit clinics for sample collection, and wait for results and feedback from their doctors, which causes much inconvenience and stress to the patient. A less burdensome alternative for diagnosing CKD is to measure BUN levels through a urine or saliva test using pH test strips. Although pH test strips are widely available, accurate determination of a patient’s pH level through analysis of strip images remains challenging. This empirical pilot study aims to explore the possibility and effectiveness of using supervised machine learning models, such as KNN, SVM, and Neural Network, to predict pH values by recognizing the RGB profile data of pH test strips. The model settings are thoroughly explained, and the accuracy of the machine learning-based pH color recognition demonstrates promise in detecting CKD. Future research may focus on optimizing the dataset and machine learning models." @default.
- W4384129619 created "2023-07-14" @default.
- W4384129619 creator A5049386651 @default.
- W4384129619 creator A5069394608 @default.
- W4384129619 date "2023-06-07" @default.
- W4384129619 modified "2023-09-24" @default.
- W4384129619 title "A Machine Learning-based pH Color Recognition for Monitoring Chronic Kidney Disease" @default.
- W4384129619 cites W2801674256 @default.
- W4384129619 cites W2890782659 @default.
- W4384129619 cites W2920948098 @default.
- W4384129619 cites W2996839562 @default.
- W4384129619 cites W3086300245 @default.
- W4384129619 doi "https://doi.org/10.1109/aiiot58121.2023.10174521" @default.
- W4384129619 hasPublicationYear "2023" @default.
- W4384129619 type Work @default.
- W4384129619 citedByCount "0" @default.
- W4384129619 crossrefType "proceedings-article" @default.
- W4384129619 hasAuthorship W4384129619A5049386651 @default.
- W4384129619 hasAuthorship W4384129619A5069394608 @default.
- W4384129619 hasConcept C119857082 @default.
- W4384129619 hasConcept C12267149 @default.
- W4384129619 hasConcept C126322002 @default.
- W4384129619 hasConcept C154945302 @default.
- W4384129619 hasConcept C159641895 @default.
- W4384129619 hasConcept C2777910003 @default.
- W4384129619 hasConcept C2778176769 @default.
- W4384129619 hasConcept C2778653478 @default.
- W4384129619 hasConcept C2780306776 @default.
- W4384129619 hasConcept C2908647359 @default.
- W4384129619 hasConcept C41008148 @default.
- W4384129619 hasConcept C71924100 @default.
- W4384129619 hasConcept C99454951 @default.
- W4384129619 hasConceptScore W4384129619C119857082 @default.
- W4384129619 hasConceptScore W4384129619C12267149 @default.
- W4384129619 hasConceptScore W4384129619C126322002 @default.
- W4384129619 hasConceptScore W4384129619C154945302 @default.
- W4384129619 hasConceptScore W4384129619C159641895 @default.
- W4384129619 hasConceptScore W4384129619C2777910003 @default.
- W4384129619 hasConceptScore W4384129619C2778176769 @default.
- W4384129619 hasConceptScore W4384129619C2778653478 @default.
- W4384129619 hasConceptScore W4384129619C2780306776 @default.
- W4384129619 hasConceptScore W4384129619C2908647359 @default.
- W4384129619 hasConceptScore W4384129619C41008148 @default.
- W4384129619 hasConceptScore W4384129619C71924100 @default.
- W4384129619 hasConceptScore W4384129619C99454951 @default.
- W4384129619 hasLocation W43841296191 @default.
- W4384129619 hasOpenAccess W4384129619 @default.
- W4384129619 hasPrimaryLocation W43841296191 @default.
- W4384129619 hasRelatedWork W2045629481 @default.
- W4384129619 hasRelatedWork W2058466993 @default.
- W4384129619 hasRelatedWork W2348032088 @default.
- W4384129619 hasRelatedWork W2348199480 @default.
- W4384129619 hasRelatedWork W2531172716 @default.
- W4384129619 hasRelatedWork W2903794051 @default.
- W4384129619 hasRelatedWork W2974900340 @default.
- W4384129619 hasRelatedWork W3044789329 @default.
- W4384129619 hasRelatedWork W3119851689 @default.
- W4384129619 hasRelatedWork W3117602326 @default.
- W4384129619 isParatext "false" @default.
- W4384129619 isRetracted "false" @default.
- W4384129619 workType "article" @default.