Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384129923> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4384129923 abstract "Artificial intelligence (AI) has been widely adopted in industrial applications, making machine learning (ML) on edge devices essential. However, the power consumption of edge devices often limits their computational capabilities. In this study, we aimed to address this challenge by utilizing feature extraction (FE) techniques, explicitly considering domain shift scenarios where the data characteristics may change in real-world applications. We introduced a simple but effective FE method, the time-frequency feature extractor (TFEx). By using AutoML and performing over 6000 cross-validations on multiple time series datasets, we compared TFEx with six other FE methods. Our results showed that TFEx was the most effective method in reducing the dimensions of raw data while maintaining accuracy. Additionally, the structure of TFEx makes it suitable for implementation on edge devices, and even a simplified version can be used in many cases without significant loss of accuracy." @default.
- W4384129923 created "2023-07-14" @default.
- W4384129923 creator A5026111117 @default.
- W4384129923 creator A5028858823 @default.
- W4384129923 creator A5033639173 @default.
- W4384129923 creator A5066303248 @default.
- W4384129923 date "2023-05-22" @default.
- W4384129923 modified "2023-09-24" @default.
- W4384129923 title "Comparing Different Feature Extraction Methods in Condition Monitoring Applications" @default.
- W4384129923 cites W1545302199 @default.
- W4384129923 cites W2089468765 @default.
- W4384129923 cites W2134295053 @default.
- W4384129923 cites W2470957961 @default.
- W4384129923 cites W2522851758 @default.
- W4384129923 cites W2810292802 @default.
- W4384129923 cites W2844117170 @default.
- W4384129923 cites W2892035503 @default.
- W4384129923 cites W2947658250 @default.
- W4384129923 cites W2971564499 @default.
- W4384129923 cites W2976569952 @default.
- W4384129923 cites W2980541623 @default.
- W4384129923 cites W3006913750 @default.
- W4384129923 cites W3080571556 @default.
- W4384129923 cites W3092012490 @default.
- W4384129923 cites W3136679447 @default.
- W4384129923 cites W3146369796 @default.
- W4384129923 cites W3208021362 @default.
- W4384129923 cites W3211002488 @default.
- W4384129923 cites W3216660278 @default.
- W4384129923 cites W4214749550 @default.
- W4384129923 cites W4288072840 @default.
- W4384129923 cites W4295027379 @default.
- W4384129923 cites W4296799652 @default.
- W4384129923 cites W4311157749 @default.
- W4384129923 cites W4313171465 @default.
- W4384129923 doi "https://doi.org/10.1109/i2mtc53148.2023.10176106" @default.
- W4384129923 hasPublicationYear "2023" @default.
- W4384129923 type Work @default.
- W4384129923 citedByCount "0" @default.
- W4384129923 crossrefType "proceedings-article" @default.
- W4384129923 hasAuthorship W4384129923A5026111117 @default.
- W4384129923 hasAuthorship W4384129923A5028858823 @default.
- W4384129923 hasAuthorship W4384129923A5033639173 @default.
- W4384129923 hasAuthorship W4384129923A5066303248 @default.
- W4384129923 hasConcept C111472728 @default.
- W4384129923 hasConcept C117978034 @default.
- W4384129923 hasConcept C119857082 @default.
- W4384129923 hasConcept C124101348 @default.
- W4384129923 hasConcept C127413603 @default.
- W4384129923 hasConcept C132964779 @default.
- W4384129923 hasConcept C134306372 @default.
- W4384129923 hasConcept C138885662 @default.
- W4384129923 hasConcept C153180895 @default.
- W4384129923 hasConcept C154945302 @default.
- W4384129923 hasConcept C162307627 @default.
- W4384129923 hasConcept C199360897 @default.
- W4384129923 hasConcept C21880701 @default.
- W4384129923 hasConcept C2776401178 @default.
- W4384129923 hasConcept C2780586882 @default.
- W4384129923 hasConcept C33923547 @default.
- W4384129923 hasConcept C36503486 @default.
- W4384129923 hasConcept C41008148 @default.
- W4384129923 hasConcept C41895202 @default.
- W4384129923 hasConcept C52622490 @default.
- W4384129923 hasConceptScore W4384129923C111472728 @default.
- W4384129923 hasConceptScore W4384129923C117978034 @default.
- W4384129923 hasConceptScore W4384129923C119857082 @default.
- W4384129923 hasConceptScore W4384129923C124101348 @default.
- W4384129923 hasConceptScore W4384129923C127413603 @default.
- W4384129923 hasConceptScore W4384129923C132964779 @default.
- W4384129923 hasConceptScore W4384129923C134306372 @default.
- W4384129923 hasConceptScore W4384129923C138885662 @default.
- W4384129923 hasConceptScore W4384129923C153180895 @default.
- W4384129923 hasConceptScore W4384129923C154945302 @default.
- W4384129923 hasConceptScore W4384129923C162307627 @default.
- W4384129923 hasConceptScore W4384129923C199360897 @default.
- W4384129923 hasConceptScore W4384129923C21880701 @default.
- W4384129923 hasConceptScore W4384129923C2776401178 @default.
- W4384129923 hasConceptScore W4384129923C2780586882 @default.
- W4384129923 hasConceptScore W4384129923C33923547 @default.
- W4384129923 hasConceptScore W4384129923C36503486 @default.
- W4384129923 hasConceptScore W4384129923C41008148 @default.
- W4384129923 hasConceptScore W4384129923C41895202 @default.
- W4384129923 hasConceptScore W4384129923C52622490 @default.
- W4384129923 hasLocation W43841299231 @default.
- W4384129923 hasOpenAccess W4384129923 @default.
- W4384129923 hasPrimaryLocation W43841299231 @default.
- W4384129923 hasRelatedWork W2009271408 @default.
- W4384129923 hasRelatedWork W2016461833 @default.
- W4384129923 hasRelatedWork W2146076056 @default.
- W4384129923 hasRelatedWork W2184303419 @default.
- W4384129923 hasRelatedWork W2546942002 @default.
- W4384129923 hasRelatedWork W2811390910 @default.
- W4384129923 hasRelatedWork W2899683012 @default.
- W4384129923 hasRelatedWork W2994855682 @default.
- W4384129923 hasRelatedWork W4226255394 @default.
- W4384129923 hasRelatedWork W4361986733 @default.
- W4384129923 isParatext "false" @default.
- W4384129923 isRetracted "false" @default.
- W4384129923 workType "article" @default.