Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384131385> ?p ?o ?g. }
- W4384131385 endingPage "8131" @default.
- W4384131385 startingPage "8131" @default.
- W4384131385 abstract "The present analysis of state of the art portrays that actual time series or spectrum backscattered data from a point on the sea bottom are rarely used as features for machine learning models. The paper deals with the artificial intelligence techniques used to examine CHIRP-recorded data. The data were collected using a CHIRP sub-bottom profiler to study two sand bottom sites and two sandstone bottom sites in the offshore zone of Ashqelon City (Southern Israel). The first reflection time series and spectra of all the traces from the four sites generated two training and two test sets. Two logistic regression models were trained using the training sets and evaluated for accuracy using the test sets. The examination results indicate that types of sea bottom can be quantitatively characterized by applying logistic regression models to either the backscatter time series of a frequency-modulated signal or the spectrum of that backscatter. The examination accuracy reached 90% for the time series and 94% for the spectra. The application of spectral data as features for more advanced machine learning algorithms and the advantages of their combination with other types of data have great potential for future research and the enhancement of remote marine soil classification." @default.
- W4384131385 created "2023-07-14" @default.
- W4384131385 creator A5082481843 @default.
- W4384131385 creator A5091973409 @default.
- W4384131385 date "2023-07-12" @default.
- W4384131385 modified "2023-09-25" @default.
- W4384131385 title "Spectrum-Based Logistic Regression Modeling for the Sea Bottom Soil Categorization" @default.
- W4384131385 cites W1551152753 @default.
- W4384131385 cites W1982003131 @default.
- W4384131385 cites W1990656937 @default.
- W4384131385 cites W1993235444 @default.
- W4384131385 cites W1993804800 @default.
- W4384131385 cites W2003263468 @default.
- W4384131385 cites W2053169718 @default.
- W4384131385 cites W2059397245 @default.
- W4384131385 cites W2061231404 @default.
- W4384131385 cites W2062826862 @default.
- W4384131385 cites W2064940884 @default.
- W4384131385 cites W2082158533 @default.
- W4384131385 cites W2100778827 @default.
- W4384131385 cites W2123808330 @default.
- W4384131385 cites W2126952355 @default.
- W4384131385 cites W2135754053 @default.
- W4384131385 cites W2141045703 @default.
- W4384131385 cites W2151860207 @default.
- W4384131385 cites W2166776719 @default.
- W4384131385 cites W2293190466 @default.
- W4384131385 cites W2523887947 @default.
- W4384131385 cites W2561832701 @default.
- W4384131385 cites W2619651600 @default.
- W4384131385 cites W2624537125 @default.
- W4384131385 cites W2779410151 @default.
- W4384131385 cites W2787894218 @default.
- W4384131385 cites W2791796888 @default.
- W4384131385 cites W2804033066 @default.
- W4384131385 cites W2809467446 @default.
- W4384131385 cites W2889349132 @default.
- W4384131385 cites W2889891850 @default.
- W4384131385 cites W2896483100 @default.
- W4384131385 cites W2954700524 @default.
- W4384131385 cites W3012318659 @default.
- W4384131385 cites W3022198147 @default.
- W4384131385 cites W3079313029 @default.
- W4384131385 cites W3097269591 @default.
- W4384131385 cites W3106763869 @default.
- W4384131385 cites W3121874936 @default.
- W4384131385 cites W3165197464 @default.
- W4384131385 cites W3166575248 @default.
- W4384131385 cites W3215499080 @default.
- W4384131385 cites W4214895543 @default.
- W4384131385 cites W4280600331 @default.
- W4384131385 cites W4286631287 @default.
- W4384131385 cites W4311719859 @default.
- W4384131385 cites W4317790192 @default.
- W4384131385 cites W4328110125 @default.
- W4384131385 doi "https://doi.org/10.3390/app13148131" @default.
- W4384131385 hasPublicationYear "2023" @default.
- W4384131385 type Work @default.
- W4384131385 citedByCount "0" @default.
- W4384131385 crossrefType "journal-article" @default.
- W4384131385 hasAuthorship W4384131385A5082481843 @default.
- W4384131385 hasAuthorship W4384131385A5091973409 @default.
- W4384131385 hasBestOaLocation W43841313851 @default.
- W4384131385 hasConcept C119857082 @default.
- W4384131385 hasConcept C120665830 @default.
- W4384131385 hasConcept C121332964 @default.
- W4384131385 hasConcept C127313418 @default.
- W4384131385 hasConcept C132794960 @default.
- W4384131385 hasConcept C143724316 @default.
- W4384131385 hasConcept C151406439 @default.
- W4384131385 hasConcept C151730666 @default.
- W4384131385 hasConcept C151956035 @default.
- W4384131385 hasConcept C154945302 @default.
- W4384131385 hasConcept C199360897 @default.
- W4384131385 hasConcept C2524010 @default.
- W4384131385 hasConcept C28719098 @default.
- W4384131385 hasConcept C30354325 @default.
- W4384131385 hasConcept C33923547 @default.
- W4384131385 hasConcept C41008148 @default.
- W4384131385 hasConcept C520434653 @default.
- W4384131385 hasConcept C555944384 @default.
- W4384131385 hasConcept C62649853 @default.
- W4384131385 hasConcept C65682993 @default.
- W4384131385 hasConcept C76155785 @default.
- W4384131385 hasConcept C94124525 @default.
- W4384131385 hasConceptScore W4384131385C119857082 @default.
- W4384131385 hasConceptScore W4384131385C120665830 @default.
- W4384131385 hasConceptScore W4384131385C121332964 @default.
- W4384131385 hasConceptScore W4384131385C127313418 @default.
- W4384131385 hasConceptScore W4384131385C132794960 @default.
- W4384131385 hasConceptScore W4384131385C143724316 @default.
- W4384131385 hasConceptScore W4384131385C151406439 @default.
- W4384131385 hasConceptScore W4384131385C151730666 @default.
- W4384131385 hasConceptScore W4384131385C151956035 @default.
- W4384131385 hasConceptScore W4384131385C154945302 @default.
- W4384131385 hasConceptScore W4384131385C199360897 @default.
- W4384131385 hasConceptScore W4384131385C2524010 @default.
- W4384131385 hasConceptScore W4384131385C28719098 @default.