Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384132078> ?p ?o ?g. }
- W4384132078 endingPage "3499" @default.
- W4384132078 startingPage "3499" @default.
- W4384132078 abstract "Airborne light detection and ranging (LiDAR) technology has been widely utilized for collecting three-dimensional (3D) point cloud data on forest scenes, enabling the generation of high-accuracy digital elevation models (DEMs) for the efficient investigation and management of forest resources. Point cloud filtering serves as the crucial initial step in DEM generation, directly influencing the accuracy of the resulting DEM. However, forest filtering presents challenges in dealing with sparse point clouds and selecting appropriate initial ground points. The introduction of full-waveform LiDAR data offers a potential solution to the problem of sparse point clouds. Additionally, advancements in multi-source data integration and machine learning algorithms have created new avenues that can address the issue of initial ground point selection. To tackle these challenges, this paper proposes a novel filtering method for forest scenes utilizing full-waveform LiDAR data and hyperspectral image data. The proposed method consists of two main steps. Firstly, we employ the improved dynamic graph convolutional neural network (IDGCNN) to extract initial ground points. In this step, we utilize three types of low-correlation features: LiDAR features, waveform features, and spectral features. To enhance its accuracy and adaptability, a self-attention module was incorporated into the DGCNN algorithm. Comparative experiments were conducted to evaluate the effectiveness of the algorithm, demonstrating that the IDGCNN algorithm achieves the highest classification accuracy with an overall accuracy (OA) value of 99.38% and a kappa coefficient of 95.95%. The second-best performer was the RandLA-net algorithm, achieving an OA value of 98.73% and a kappa coefficient of 91.68%. The second step involves refining the initial ground points using the cloth simulation filter (CSF) algorithm. By employing the CSF algorithm, non-ground points present in the initial ground points are effectively filtered out. To validate the efficacy of the proposed filtering method, we generated a DEM with a resolution of 0.5 using the ground points extracted in the first step, the refined ground points obtained with the combination of the first and second steps, and the ground points obtained directly using the CSF algorithm. A comparative analysis with 23 reference control points revealed the effectiveness of our proposed method, as evidenced by the median error of 0.41 m, maximum error of 0.75 m, and average error of 0.33 m." @default.
- W4384132078 created "2023-07-14" @default.
- W4384132078 creator A5055645197 @default.
- W4384132078 creator A5059843808 @default.
- W4384132078 creator A5061911987 @default.
- W4384132078 creator A5066599847 @default.
- W4384132078 creator A5076682973 @default.
- W4384132078 creator A5077092703 @default.
- W4384132078 creator A5084585443 @default.
- W4384132078 date "2023-07-12" @default.
- W4384132078 modified "2023-10-18" @default.
- W4384132078 title "High-Accuracy Filtering of Forest Scenes Based on Full-Waveform LiDAR Data and Hyperspectral Images" @default.
- W4384132078 cites W1604274158 @default.
- W4384132078 cites W1970593133 @default.
- W4384132078 cites W1974696470 @default.
- W4384132078 cites W1990077509 @default.
- W4384132078 cites W1998634253 @default.
- W4384132078 cites W2011938923 @default.
- W4384132078 cites W2012821055 @default.
- W4384132078 cites W2013206258 @default.
- W4384132078 cites W2014091167 @default.
- W4384132078 cites W2052256290 @default.
- W4384132078 cites W2055580833 @default.
- W4384132078 cites W2091168295 @default.
- W4384132078 cites W2094605604 @default.
- W4384132078 cites W2100355334 @default.
- W4384132078 cites W2104998606 @default.
- W4384132078 cites W2133160971 @default.
- W4384132078 cites W2137933418 @default.
- W4384132078 cites W2138060511 @default.
- W4384132078 cites W2149059790 @default.
- W4384132078 cites W2156087253 @default.
- W4384132078 cites W2165796970 @default.
- W4384132078 cites W2169951244 @default.
- W4384132078 cites W2313929077 @default.
- W4384132078 cites W2322716129 @default.
- W4384132078 cites W2436494909 @default.
- W4384132078 cites W2515344238 @default.
- W4384132078 cites W2746630228 @default.
- W4384132078 cites W2754328778 @default.
- W4384132078 cites W2790493735 @default.
- W4384132078 cites W2794196418 @default.
- W4384132078 cites W2880642496 @default.
- W4384132078 cites W2898064827 @default.
- W4384132078 cites W2899099629 @default.
- W4384132078 cites W2899827402 @default.
- W4384132078 cites W2953484502 @default.
- W4384132078 cites W3008220642 @default.
- W4384132078 cites W3012494314 @default.
- W4384132078 cites W3106645491 @default.
- W4384132078 cites W3135761984 @default.
- W4384132078 cites W4224882649 @default.
- W4384132078 cites W4225759834 @default.
- W4384132078 cites W4300430800 @default.
- W4384132078 cites W4313627848 @default.
- W4384132078 cites W4324144346 @default.
- W4384132078 cites W897634805 @default.
- W4384132078 cites W2068026543 @default.
- W4384132078 doi "https://doi.org/10.3390/rs15143499" @default.
- W4384132078 hasPublicationYear "2023" @default.
- W4384132078 type Work @default.
- W4384132078 citedByCount "0" @default.
- W4384132078 crossrefType "journal-article" @default.
- W4384132078 hasAuthorship W4384132078A5055645197 @default.
- W4384132078 hasAuthorship W4384132078A5059843808 @default.
- W4384132078 hasAuthorship W4384132078A5061911987 @default.
- W4384132078 hasAuthorship W4384132078A5066599847 @default.
- W4384132078 hasAuthorship W4384132078A5076682973 @default.
- W4384132078 hasAuthorship W4384132078A5077092703 @default.
- W4384132078 hasAuthorship W4384132078A5084585443 @default.
- W4384132078 hasBestOaLocation W43841320781 @default.
- W4384132078 hasConcept C127313418 @default.
- W4384132078 hasConcept C131979681 @default.
- W4384132078 hasConcept C154945302 @default.
- W4384132078 hasConcept C159078339 @default.
- W4384132078 hasConcept C197424946 @default.
- W4384132078 hasConcept C41008148 @default.
- W4384132078 hasConcept C51399673 @default.
- W4384132078 hasConcept C554190296 @default.
- W4384132078 hasConcept C62649853 @default.
- W4384132078 hasConcept C76155785 @default.
- W4384132078 hasConceptScore W4384132078C127313418 @default.
- W4384132078 hasConceptScore W4384132078C131979681 @default.
- W4384132078 hasConceptScore W4384132078C154945302 @default.
- W4384132078 hasConceptScore W4384132078C159078339 @default.
- W4384132078 hasConceptScore W4384132078C197424946 @default.
- W4384132078 hasConceptScore W4384132078C41008148 @default.
- W4384132078 hasConceptScore W4384132078C51399673 @default.
- W4384132078 hasConceptScore W4384132078C554190296 @default.
- W4384132078 hasConceptScore W4384132078C62649853 @default.
- W4384132078 hasConceptScore W4384132078C76155785 @default.
- W4384132078 hasFunder F4320335777 @default.
- W4384132078 hasIssue "14" @default.
- W4384132078 hasLocation W43841320781 @default.
- W4384132078 hasOpenAccess W4384132078 @default.
- W4384132078 hasPrimaryLocation W43841320781 @default.
- W4384132078 hasRelatedWork W1999645993 @default.
- W4384132078 hasRelatedWork W2030080266 @default.