Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384133663> ?p ?o ?g. }
- W4384133663 endingPage "104436" @default.
- W4384133663 startingPage "104436" @default.
- W4384133663 abstract "Clinical data's confidential nature often limits the development of machine learning models in healthcare. Generative adversarial networks (GANs) can synthesise realistic datasets, but suffer from mode collapse, resulting in low diversity and bias towards majority demographics and common clinical practices. This work proposes an extension to the classic GAN framework that includes a variational autoencoder (VAE) and an external memory mechanism to overcome these limitations and generate synthetic data accurately describing imbalanced class distributions commonly found in clinical variables.The proposed method generated a synthetic dataset related to antiretroviral therapy for human immunodeficiency virus (ART for HIV). We evaluated it based on five metrics: (1) accurately representing imbalanced class distribution; (2) the realism of the individual variables; (3) the realism among variables; (4) patient disclosure risk; and (5) the utility of the generated dataset for developing downstream machine learning models.The proposed method overcomes the issue of mode collapse and generates a synthetic dataset that accurately describes imbalanced class distributions commonly found in clinical variables. The generated data has a patient disclosure risk of 0.095%, lower than the 9% threshold stated by Health Canada and the European Medicines Agency, making it suitable for distribution to the research community with high security. The generated data also has high utility, indicating the potential of the proposed method to enable the development of downstream machine learning algorithms for healthcare applications using synthetic data.Our proposed extension to the classic GAN framework, which includes a VAE and an external memory mechanism, represents a promising approach towards generating synthetic data that accurately describe imbalanced class distributions commonly found in clinical variables. This method overcomes the limitations of GANs and creates more realistic datasets with higher patient cohort diversity, facilitating the development of downstream machine learning algorithms for healthcare applications." @default.
- W4384133663 created "2023-07-14" @default.
- W4384133663 creator A5002487044 @default.
- W4384133663 creator A5021444442 @default.
- W4384133663 creator A5033012471 @default.
- W4384133663 creator A5033997225 @default.
- W4384133663 creator A5034073363 @default.
- W4384133663 creator A5062384332 @default.
- W4384133663 creator A5073143497 @default.
- W4384133663 creator A5074420045 @default.
- W4384133663 creator A5084618823 @default.
- W4384133663 date "2023-08-01" @default.
- W4384133663 modified "2023-10-13" @default.
- W4384133663 title "Generating synthetic clinical data that capture class imbalanced distributions with generative adversarial networks: Example using antiretroviral therapy for HIV" @default.
- W4384133663 cites W1498436455 @default.
- W4384133663 cites W1566256432 @default.
- W4384133663 cites W1997865285 @default.
- W4384133663 cites W2036836781 @default.
- W4384133663 cites W2046689939 @default.
- W4384133663 cites W2063159959 @default.
- W4384133663 cites W2064675550 @default.
- W4384133663 cites W2074302571 @default.
- W4384133663 cites W2079484991 @default.
- W4384133663 cites W2099249232 @default.
- W4384133663 cites W2166093121 @default.
- W4384133663 cites W2296073425 @default.
- W4384133663 cites W2397556658 @default.
- W4384133663 cites W2896893468 @default.
- W4384133663 cites W2904730732 @default.
- W4384133663 cites W2905097561 @default.
- W4384133663 cites W2910707576 @default.
- W4384133663 cites W2962770929 @default.
- W4384133663 cites W2963341071 @default.
- W4384133663 cites W3022574011 @default.
- W4384133663 cites W3025331699 @default.
- W4384133663 cites W3091123787 @default.
- W4384133663 cites W3091951858 @default.
- W4384133663 cites W3166254754 @default.
- W4384133663 cites W3192478323 @default.
- W4384133663 cites W3196876339 @default.
- W4384133663 cites W3197418972 @default.
- W4384133663 cites W3199810803 @default.
- W4384133663 cites W3215517669 @default.
- W4384133663 cites W4255898812 @default.
- W4384133663 cites W4308792515 @default.
- W4384133663 cites W4310917402 @default.
- W4384133663 doi "https://doi.org/10.1016/j.jbi.2023.104436" @default.
- W4384133663 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37451495" @default.
- W4384133663 hasPublicationYear "2023" @default.
- W4384133663 type Work @default.
- W4384133663 citedByCount "1" @default.
- W4384133663 crossrefType "journal-article" @default.
- W4384133663 hasAuthorship W4384133663A5002487044 @default.
- W4384133663 hasAuthorship W4384133663A5021444442 @default.
- W4384133663 hasAuthorship W4384133663A5033012471 @default.
- W4384133663 hasAuthorship W4384133663A5033997225 @default.
- W4384133663 hasAuthorship W4384133663A5034073363 @default.
- W4384133663 hasAuthorship W4384133663A5062384332 @default.
- W4384133663 hasAuthorship W4384133663A5073143497 @default.
- W4384133663 hasAuthorship W4384133663A5074420045 @default.
- W4384133663 hasAuthorship W4384133663A5084618823 @default.
- W4384133663 hasBestOaLocation W43841336631 @default.
- W4384133663 hasConcept C101738243 @default.
- W4384133663 hasConcept C119857082 @default.
- W4384133663 hasConcept C124101348 @default.
- W4384133663 hasConcept C154945302 @default.
- W4384133663 hasConcept C160920958 @default.
- W4384133663 hasConcept C2777212361 @default.
- W4384133663 hasConcept C37736160 @default.
- W4384133663 hasConcept C41008148 @default.
- W4384133663 hasConcept C50644808 @default.
- W4384133663 hasConceptScore W4384133663C101738243 @default.
- W4384133663 hasConceptScore W4384133663C119857082 @default.
- W4384133663 hasConceptScore W4384133663C124101348 @default.
- W4384133663 hasConceptScore W4384133663C154945302 @default.
- W4384133663 hasConceptScore W4384133663C160920958 @default.
- W4384133663 hasConceptScore W4384133663C2777212361 @default.
- W4384133663 hasConceptScore W4384133663C37736160 @default.
- W4384133663 hasConceptScore W4384133663C41008148 @default.
- W4384133663 hasConceptScore W4384133663C50644808 @default.
- W4384133663 hasLocation W43841336631 @default.
- W4384133663 hasLocation W43841336632 @default.
- W4384133663 hasLocation W43841336633 @default.
- W4384133663 hasOpenAccess W4384133663 @default.
- W4384133663 hasPrimaryLocation W43841336631 @default.
- W4384133663 hasRelatedWork W2885254252 @default.
- W4384133663 hasRelatedWork W3007834030 @default.
- W4384133663 hasRelatedWork W3046843850 @default.
- W4384133663 hasRelatedWork W4225984852 @default.
- W4384133663 hasRelatedWork W4285132867 @default.
- W4384133663 hasRelatedWork W4313887253 @default.
- W4384133663 hasRelatedWork W4379116706 @default.
- W4384133663 hasRelatedWork W4385687973 @default.
- W4384133663 hasRelatedWork W4386716251 @default.
- W4384133663 hasRelatedWork W4386760178 @default.
- W4384133663 hasVolume "144" @default.
- W4384133663 isParatext "false" @default.
- W4384133663 isRetracted "false" @default.