Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384133676> ?p ?o ?g. }
- W4384133676 abstract "Landslides are dangerous events that threaten both human life and property. This research presents a case study of Kaghan valley catchment, which is an area of frequent landslide activity. We aim to present a comparison between the bivariate Landslide Numerical Risk Factor (LNRF), Statistical Index (SI) and Information Value (InfV) statistical models to evaluate landslide susceptibility. A total of 1556 landslides were identified using earlier reports, field surveys, and GOOGLE Earth imagery. The abundance of landslides is primarily controlled by acute deformation caused by a major thrust fault system and proximity to Hazara Kashmir Syntaxis (HKS). A landslide inventory was randomly partitioned into two datasets. 70% (1106) of landslides were used as a training phase of the models, whereas 30% (450) as validation of the three models. A spatial database of 11 conditioning factors was produced consisting of slope, aspect, elevation, lithology, land use, Topographic Wetness Index (TWI), rainfall, Stream Power Index (SPI), distance to faults, rivers and streams. All the landslide susceptibility assessment parameters were obtained from different sources and different landslide susceptibility maps were prepared on the GIS software. Performance of the three models was validated through the Receiver operator Characteristics (ROC) through success and prediction rate curves. Results show that the area under the ROC curve (AUC) for InfV, LNRF and SI models are 70.95, 83.99 and 67.56 for success rate curves and 70.75, 83.99 and 67.85 for prediction rate curves, respectively. LNRF having the highest AUC value proved to be superior for generating regional scale landslide susceptibility maps." @default.
- W4384133676 created "2023-07-14" @default.
- W4384133676 creator A5014718913 @default.
- W4384133676 creator A5017112367 @default.
- W4384133676 creator A5021470903 @default.
- W4384133676 creator A5039126471 @default.
- W4384133676 creator A5051854257 @default.
- W4384133676 creator A5065541950 @default.
- W4384133676 creator A5076597206 @default.
- W4384133676 date "2023-07-12" @default.
- W4384133676 modified "2023-09-27" @default.
- W4384133676 title "Application of bivariate statistical techniques for landslide susceptibility mapping: A case study in Kaghan Valley, NW Pakistan" @default.
- W4384133676 cites W143148934 @default.
- W4384133676 cites W1615361574 @default.
- W4384133676 cites W1972765166 @default.
- W4384133676 cites W1977053323 @default.
- W4384133676 cites W1982797882 @default.
- W4384133676 cites W1983423541 @default.
- W4384133676 cites W1988650824 @default.
- W4384133676 cites W1992339502 @default.
- W4384133676 cites W1994388072 @default.
- W4384133676 cites W1998439728 @default.
- W4384133676 cites W1999490121 @default.
- W4384133676 cites W2003049509 @default.
- W4384133676 cites W2005151690 @default.
- W4384133676 cites W2009093518 @default.
- W4384133676 cites W2013820873 @default.
- W4384133676 cites W2016896891 @default.
- W4384133676 cites W2027387749 @default.
- W4384133676 cites W2028124403 @default.
- W4384133676 cites W2034091664 @default.
- W4384133676 cites W2035737599 @default.
- W4384133676 cites W2049271682 @default.
- W4384133676 cites W2051784080 @default.
- W4384133676 cites W2055782035 @default.
- W4384133676 cites W2058082754 @default.
- W4384133676 cites W2063881968 @default.
- W4384133676 cites W2064848612 @default.
- W4384133676 cites W2065105994 @default.
- W4384133676 cites W2066848039 @default.
- W4384133676 cites W2073869842 @default.
- W4384133676 cites W2075734143 @default.
- W4384133676 cites W2078730937 @default.
- W4384133676 cites W2079185991 @default.
- W4384133676 cites W2080134555 @default.
- W4384133676 cites W2082622325 @default.
- W4384133676 cites W2084468056 @default.
- W4384133676 cites W2084718611 @default.
- W4384133676 cites W2089865782 @default.
- W4384133676 cites W2093703725 @default.
- W4384133676 cites W2134955829 @default.
- W4384133676 cites W2137782692 @default.
- W4384133676 cites W2138612078 @default.
- W4384133676 cites W2143296882 @default.
- W4384133676 cites W2143655629 @default.
- W4384133676 cites W2147373555 @default.
- W4384133676 cites W2147555471 @default.
- W4384133676 cites W2162173125 @default.
- W4384133676 cites W2193898033 @default.
- W4384133676 cites W2222447337 @default.
- W4384133676 cites W2329793375 @default.
- W4384133676 cites W2413680242 @default.
- W4384133676 cites W2495316465 @default.
- W4384133676 cites W2527933011 @default.
- W4384133676 cites W2606642786 @default.
- W4384133676 cites W2730318444 @default.
- W4384133676 cites W2737981069 @default.
- W4384133676 cites W2790626165 @default.
- W4384133676 cites W2793831793 @default.
- W4384133676 cites W2800960101 @default.
- W4384133676 cites W2905564388 @default.
- W4384133676 cites W2941088460 @default.
- W4384133676 cites W2944926649 @default.
- W4384133676 cites W2948073449 @default.
- W4384133676 cites W2957135778 @default.
- W4384133676 cites W2969352830 @default.
- W4384133676 cites W2983899555 @default.
- W4384133676 cites W3018999748 @default.
- W4384133676 cites W3035223767 @default.
- W4384133676 cites W3049651666 @default.
- W4384133676 cites W3091882851 @default.
- W4384133676 cites W3112585178 @default.
- W4384133676 cites W3135443170 @default.
- W4384133676 cites W3138356816 @default.
- W4384133676 cites W3143449138 @default.
- W4384133676 cites W3205472907 @default.
- W4384133676 cites W4200030526 @default.
- W4384133676 cites W4200551585 @default.
- W4384133676 cites W4210473467 @default.
- W4384133676 cites W4214741445 @default.
- W4384133676 cites W4283323489 @default.
- W4384133676 cites W4293479196 @default.
- W4384133676 cites W4297534011 @default.
- W4384133676 doi "https://doi.org/10.1002/gj.4836" @default.
- W4384133676 hasPublicationYear "2023" @default.
- W4384133676 type Work @default.
- W4384133676 citedByCount "0" @default.
- W4384133676 crossrefType "journal-article" @default.
- W4384133676 hasAuthorship W4384133676A5014718913 @default.
- W4384133676 hasAuthorship W4384133676A5017112367 @default.