Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384133705> ?p ?o ?g. }
- W4384133705 endingPage "105143" @default.
- W4384133705 startingPage "105143" @default.
- W4384133705 abstract "Longitudinal patterns of growth in early childhood are associated with health conditions throughout life. Knowledge of such patterns and the ability to predict them can lead to better prevention and improved health promotion in adulthood. However, growth analyses are characterized by significant variability, and pattern detection is affected by the method applied. Moreover, pattern labelling is typically performed based on ad hoc methods, such as visualizations or clinical experience. Here, we propose a novel pipeline using features extracted from growth trajectories using mathematical, statistical and machine-learning approaches to predict growth patterns and label them in a systematic and unequivocal manner.We extracted mathematical and clinical features from 9577 children growth trajectories embedded with machine-learning predictions of the growth patterns. We experimented with two sets of features (CAnonical Time-series Characteristics and trajectory features specific to growth), developmental periods and six machine-learning classifiers. Clinical experts provided labels for the detected patterns and decision rules were created to associate the features with the labelled patterns. The predictive capacity of the extracted features was validated on two heterogenous populations (The Applied Research Group for Kids and the 2004 Pelotas Birth Cohort, based in Canada and Brazil, respectively).Features predictive ability measured by accuracy and F1 score was ≥ 80% and ≥ 0.76 respectively in both cohorts. A small number of features (n = 74) was sufficient to distinguish between growth patterns in both cohorts. Slope, intercept of the trajectory, age at peak value, start value and change of the growth measure were among the top identified features.Growth features can be reliably used as predictors of growth patterns and provide an unbiased understanding of growth patterns. They can be used as tool to reduce the effort to repeat analysis and variability concerning anthropometric measures, time points and analytical methods, in the context of the same or similar populations." @default.
- W4384133705 created "2023-07-14" @default.
- W4384133705 creator A5007500681 @default.
- W4384133705 creator A5012075462 @default.
- W4384133705 creator A5017969782 @default.
- W4384133705 creator A5020200598 @default.
- W4384133705 creator A5025503136 @default.
- W4384133705 creator A5045304131 @default.
- W4384133705 creator A5046030627 @default.
- W4384133705 creator A5052182345 @default.
- W4384133705 creator A5059816717 @default.
- W4384133705 creator A5069319984 @default.
- W4384133705 creator A5087659209 @default.
- W4384133705 date "2023-09-01" @default.
- W4384133705 modified "2023-10-09" @default.
- W4384133705 title "A novel systematic pipeline for increased predictability and explainability of growth patterns in children using trajectory features" @default.
- W4384133705 cites W1967329472 @default.
- W4384133705 cites W1974959407 @default.
- W4384133705 cites W1996443199 @default.
- W4384133705 cites W2024081693 @default.
- W4384133705 cites W2028031999 @default.
- W4384133705 cites W2041999773 @default.
- W4384133705 cites W2110812018 @default.
- W4384133705 cites W2120247405 @default.
- W4384133705 cites W2146575867 @default.
- W4384133705 cites W2155774280 @default.
- W4384133705 cites W2156125548 @default.
- W4384133705 cites W2167864556 @default.
- W4384133705 cites W2171576698 @default.
- W4384133705 cites W2431876537 @default.
- W4384133705 cites W2781920217 @default.
- W4384133705 cites W2790437056 @default.
- W4384133705 cites W2794722104 @default.
- W4384133705 cites W2883819011 @default.
- W4384133705 cites W2892096998 @default.
- W4384133705 cites W2910709242 @default.
- W4384133705 cites W2920897886 @default.
- W4384133705 cites W2944954104 @default.
- W4384133705 cites W2967988901 @default.
- W4384133705 cites W3007146572 @default.
- W4384133705 cites W3009891155 @default.
- W4384133705 cites W3113130648 @default.
- W4384133705 cites W3133550640 @default.
- W4384133705 cites W3156313717 @default.
- W4384133705 cites W4287391859 @default.
- W4384133705 cites W4318617624 @default.
- W4384133705 cites W4321002279 @default.
- W4384133705 doi "https://doi.org/10.1016/j.ijmedinf.2023.105143" @default.
- W4384133705 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37473656" @default.
- W4384133705 hasPublicationYear "2023" @default.
- W4384133705 type Work @default.
- W4384133705 citedByCount "0" @default.
- W4384133705 crossrefType "journal-article" @default.
- W4384133705 hasAuthorship W4384133705A5007500681 @default.
- W4384133705 hasAuthorship W4384133705A5012075462 @default.
- W4384133705 hasAuthorship W4384133705A5017969782 @default.
- W4384133705 hasAuthorship W4384133705A5020200598 @default.
- W4384133705 hasAuthorship W4384133705A5025503136 @default.
- W4384133705 hasAuthorship W4384133705A5045304131 @default.
- W4384133705 hasAuthorship W4384133705A5046030627 @default.
- W4384133705 hasAuthorship W4384133705A5052182345 @default.
- W4384133705 hasAuthorship W4384133705A5059816717 @default.
- W4384133705 hasAuthorship W4384133705A5069319984 @default.
- W4384133705 hasAuthorship W4384133705A5087659209 @default.
- W4384133705 hasBestOaLocation W43841337052 @default.
- W4384133705 hasConcept C105795698 @default.
- W4384133705 hasConcept C119857082 @default.
- W4384133705 hasConcept C121332964 @default.
- W4384133705 hasConcept C126322002 @default.
- W4384133705 hasConcept C1276947 @default.
- W4384133705 hasConcept C13662910 @default.
- W4384133705 hasConcept C153180895 @default.
- W4384133705 hasConcept C154945302 @default.
- W4384133705 hasConcept C197640229 @default.
- W4384133705 hasConcept C199360897 @default.
- W4384133705 hasConcept C3019719930 @default.
- W4384133705 hasConcept C33923547 @default.
- W4384133705 hasConcept C41008148 @default.
- W4384133705 hasConcept C43521106 @default.
- W4384133705 hasConcept C71924100 @default.
- W4384133705 hasConceptScore W4384133705C105795698 @default.
- W4384133705 hasConceptScore W4384133705C119857082 @default.
- W4384133705 hasConceptScore W4384133705C121332964 @default.
- W4384133705 hasConceptScore W4384133705C126322002 @default.
- W4384133705 hasConceptScore W4384133705C1276947 @default.
- W4384133705 hasConceptScore W4384133705C13662910 @default.
- W4384133705 hasConceptScore W4384133705C153180895 @default.
- W4384133705 hasConceptScore W4384133705C154945302 @default.
- W4384133705 hasConceptScore W4384133705C197640229 @default.
- W4384133705 hasConceptScore W4384133705C199360897 @default.
- W4384133705 hasConceptScore W4384133705C3019719930 @default.
- W4384133705 hasConceptScore W4384133705C33923547 @default.
- W4384133705 hasConceptScore W4384133705C41008148 @default.
- W4384133705 hasConceptScore W4384133705C43521106 @default.
- W4384133705 hasConceptScore W4384133705C71924100 @default.
- W4384133705 hasLocation W43841337051 @default.
- W4384133705 hasLocation W43841337052 @default.
- W4384133705 hasLocation W43841337053 @default.