Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384134618> ?p ?o ?g. }
- W4384134618 abstract "In the last decade, the adoption of technological tools in manufacturing industry, such as the use of the Internet of Things (IoT) and Machine Learning (ML), has led to the advent of the industry 4.0 (I4.0). In this scenario, intelligent devices can generate large volumes of data about industrial machinery and equipment that can be used to make maintenance more efficient. Prognostics and Health Management (PHM) is an emerging maintenance strategy that uses systems’ Condition Monitoring through IoT sensors installed on machinery to diagnose their faults or estimate their Remaining Useful Life (RUL). This study aims to conduct a Systematic Literature Review (SLR) on the use of ML techniques in the field of PHM of industrial mechanical systems and equipment. 50 studies resulted eligible for the above-mentioned SLR. Diagnostics and prognostics approach and the ML algorithm types used in the 50 analyzed papers have been analyzed together with the Key Performance Indicators (KPIs) used for their validation. From the analyses, it was found that Shallow Learning and Deep Learning (DL) algorithms are the most applied ones, while KPIs are used differently according to the type of task classification or regression. Moreover, results highlighted that many authors still use artificial datasets to test their algorithms, instead of datasets based on real data retrieved by their components. For the last type of datasets, this paper also introduces a schematic framework to standardize the step-by-step diagnostics and prognostics process carried out by the authors." @default.
- W4384134618 created "2023-07-14" @default.
- W4384134618 creator A5008324430 @default.
- W4384134618 creator A5041488182 @default.
- W4384134618 creator A5059137242 @default.
- W4384134618 creator A5071068027 @default.
- W4384134618 creator A5071127626 @default.
- W4384134618 creator A5071759393 @default.
- W4384134618 creator A5092459164 @default.
- W4384134618 date "2023-01-01" @default.
- W4384134618 modified "2023-09-27" @default.
- W4384134618 title "Machine learning for prognostics and health management of industrial mechanical systems and equipment: A systematic literature review" @default.
- W4384134618 cites W2033800551 @default.
- W4384134618 cites W2051588359 @default.
- W4384134618 cites W2247743386 @default.
- W4384134618 cites W2412781046 @default.
- W4384134618 cites W2463319845 @default.
- W4384134618 cites W2566212543 @default.
- W4384134618 cites W2601486059 @default.
- W4384134618 cites W2612904117 @default.
- W4384134618 cites W2737245038 @default.
- W4384134618 cites W2744067593 @default.
- W4384134618 cites W2762204677 @default.
- W4384134618 cites W2793167745 @default.
- W4384134618 cites W2815862320 @default.
- W4384134618 cites W2895594817 @default.
- W4384134618 cites W2898125729 @default.
- W4384134618 cites W2900438754 @default.
- W4384134618 cites W2917014261 @default.
- W4384134618 cites W2929444508 @default.
- W4384134618 cites W2931331224 @default.
- W4384134618 cites W2938398362 @default.
- W4384134618 cites W2956342231 @default.
- W4384134618 cites W2986585482 @default.
- W4384134618 cites W3015120339 @default.
- W4384134618 cites W3016665419 @default.
- W4384134618 cites W3020895169 @default.
- W4384134618 cites W3021048621 @default.
- W4384134618 cites W3031183206 @default.
- W4384134618 cites W3038429912 @default.
- W4384134618 cites W3040413340 @default.
- W4384134618 cites W3086515207 @default.
- W4384134618 cites W3090682168 @default.
- W4384134618 cites W3092147624 @default.
- W4384134618 cites W3104794984 @default.
- W4384134618 cites W3112055870 @default.
- W4384134618 cites W3131345956 @default.
- W4384134618 cites W3131785880 @default.
- W4384134618 cites W3150223772 @default.
- W4384134618 cites W3153657341 @default.
- W4384134618 cites W3154770479 @default.
- W4384134618 cites W3160064936 @default.
- W4384134618 cites W3163734136 @default.
- W4384134618 cites W3164825936 @default.
- W4384134618 cites W3168685493 @default.
- W4384134618 cites W3197205301 @default.
- W4384134618 cites W3197807047 @default.
- W4384134618 cites W3201856609 @default.
- W4384134618 cites W3208770235 @default.
- W4384134618 cites W3215115644 @default.
- W4384134618 cites W4200082711 @default.
- W4384134618 cites W4214579459 @default.
- W4384134618 cites W4214591409 @default.
- W4384134618 cites W4214863898 @default.
- W4384134618 cites W4223986613 @default.
- W4384134618 cites W4224252567 @default.
- W4384134618 cites W4226361761 @default.
- W4384134618 cites W4295832144 @default.
- W4384134618 cites W4307568292 @default.
- W4384134618 cites W4308461508 @default.
- W4384134618 cites W4308712053 @default.
- W4384134618 cites W4309287803 @default.
- W4384134618 cites W4311628809 @default.
- W4384134618 cites W4311750276 @default.
- W4384134618 cites W4313155482 @default.
- W4384134618 cites W4315866203 @default.
- W4384134618 doi "https://doi.org/10.1177/18479790231186848" @default.
- W4384134618 hasPublicationYear "2023" @default.
- W4384134618 type Work @default.
- W4384134618 citedByCount "1" @default.
- W4384134618 countsByYear W43841346182023 @default.
- W4384134618 crossrefType "journal-article" @default.
- W4384134618 hasAuthorship W4384134618A5008324430 @default.
- W4384134618 hasAuthorship W4384134618A5041488182 @default.
- W4384134618 hasAuthorship W4384134618A5059137242 @default.
- W4384134618 hasAuthorship W4384134618A5071068027 @default.
- W4384134618 hasAuthorship W4384134618A5071127626 @default.
- W4384134618 hasAuthorship W4384134618A5071759393 @default.
- W4384134618 hasAuthorship W4384134618A5092459164 @default.
- W4384134618 hasBestOaLocation W43841346181 @default.
- W4384134618 hasConcept C111919701 @default.
- W4384134618 hasConcept C119857082 @default.
- W4384134618 hasConcept C127413603 @default.
- W4384134618 hasConcept C129364497 @default.
- W4384134618 hasConcept C135510737 @default.
- W4384134618 hasConcept C154945302 @default.
- W4384134618 hasConcept C162324750 @default.
- W4384134618 hasConcept C187736073 @default.
- W4384134618 hasConcept C192328126 @default.
- W4384134618 hasConcept C200601418 @default.