Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384135080> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W4384135080 abstract "Depending on the pandemic process, there are some problems around the world. One of them is the problem of fuel consumption and access to fuel. As a result of breakdowns in supply chains, accessibility and consumption processes for oil have changed. Accordingly, it is of great importance that future oil production, consumption, and access to oil can be predicted by some methods. Artificial intelligence stands out as a tool that can be used in this prediction. In current studies, artificial intelligence is often used for predictive purposes. In this study, it is tried to predict the future change in oil consumption and access to oil in the European Union region and candidate countries. Decision trees, Naive Bayes, Support vector machines, K nearest neighbor (KNN), and Ensemble Boosted trees were used as methods from supervised and unsupervised machine learning approaches. Depending on the different test parameters of the methods used, the estimation successes were observed, and the results were reported." @default.
- W4384135080 created "2023-07-14" @default.
- W4384135080 date "2023-01-01" @default.
- W4384135080 modified "2023-09-24" @default.
- W4384135080 title "Prediction of Oil Consumption and Oil Access of Countries in The European Union Region with Machine Learning" @default.
- W4384135080 doi "https://doi.org/10.20508/ijsmartgrid.v6i3.250.g242" @default.
- W4384135080 hasPublicationYear "2023" @default.
- W4384135080 type Work @default.
- W4384135080 citedByCount "0" @default.
- W4384135080 crossrefType "journal-article" @default.
- W4384135080 hasBestOaLocation W43841350801 @default.
- W4384135080 hasConcept C105639569 @default.
- W4384135080 hasConcept C119857082 @default.
- W4384135080 hasConcept C12267149 @default.
- W4384135080 hasConcept C144024400 @default.
- W4384135080 hasConcept C144133560 @default.
- W4384135080 hasConcept C154945302 @default.
- W4384135080 hasConcept C2910001868 @default.
- W4384135080 hasConcept C30772137 @default.
- W4384135080 hasConcept C36289849 @default.
- W4384135080 hasConcept C41008148 @default.
- W4384135080 hasConcept C52001869 @default.
- W4384135080 hasConcept C84525736 @default.
- W4384135080 hasConceptScore W4384135080C105639569 @default.
- W4384135080 hasConceptScore W4384135080C119857082 @default.
- W4384135080 hasConceptScore W4384135080C12267149 @default.
- W4384135080 hasConceptScore W4384135080C144024400 @default.
- W4384135080 hasConceptScore W4384135080C144133560 @default.
- W4384135080 hasConceptScore W4384135080C154945302 @default.
- W4384135080 hasConceptScore W4384135080C2910001868 @default.
- W4384135080 hasConceptScore W4384135080C30772137 @default.
- W4384135080 hasConceptScore W4384135080C36289849 @default.
- W4384135080 hasConceptScore W4384135080C41008148 @default.
- W4384135080 hasConceptScore W4384135080C52001869 @default.
- W4384135080 hasConceptScore W4384135080C84525736 @default.
- W4384135080 hasIssue "V6i3" @default.
- W4384135080 hasLocation W43841350801 @default.
- W4384135080 hasOpenAccess W4384135080 @default.
- W4384135080 hasPrimaryLocation W43841350801 @default.
- W4384135080 hasRelatedWork W2595988085 @default.
- W4384135080 hasRelatedWork W2783049111 @default.
- W4384135080 hasRelatedWork W3127425528 @default.
- W4384135080 hasRelatedWork W3143658565 @default.
- W4384135080 hasRelatedWork W3186233728 @default.
- W4384135080 hasRelatedWork W3204641204 @default.
- W4384135080 hasRelatedWork W4205958290 @default.
- W4384135080 hasRelatedWork W4214820172 @default.
- W4384135080 hasRelatedWork W4283016678 @default.
- W4384135080 hasRelatedWork W4361795583 @default.
- W4384135080 isParatext "false" @default.
- W4384135080 isRetracted "false" @default.
- W4384135080 workType "article" @default.