Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384154125> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4384154125 abstract "Abstract The progress of deep learning architectures, machine learning models and pathology slide digitization is an encouraging step toward meeting the growing demand for more precise classification and prediction diagnosis for the breast tumours. The BreakHis dataset with four magnification factors (40X, 100X, 200X and 400X), as well as seven deep learning architectures used for feature extraction (DenseNet 201, Inception ResNet V2, Inception V3, ResNet 50, MobileNet V2,VGG16 and VGG19), four machine learning models for classification (MLP, SVM, DT, and KNN), and two combination rules (hard and weighted voting) were investigated in this paper to design and evaluate a new proposed approach consisting of building deep hybrid homogenous ensemble. Additionally, the best proposed models were compared to deep stacked, deep bagging, deep boosting, and deep hybrid heterogenous ensemble to choose the best strategy in building deep ensemble learning techniques. The four performance measures accuracy, precision, recall, and F1‐score were used in the empirical evaluations, as well as 5‐fold cross‐validation, the Scott Knott statistical test, and the Borda Count voting method. The results demonstrated the new approach's potential since it outscored both singles and other deep ensemble learning strategies, achieving accuracy values of 98.3% and 97.7% for the MFs 40X, 100X and 200X, 400X, respectively. The empirical results demonstrated that the proposed ensembles are impactful for histopathological breast cancer images classification, and they provided a promising tool to assist pathologists in the diagnosis of breast cancer." @default.
- W4384154125 created "2023-07-14" @default.
- W4384154125 creator A5000218612 @default.
- W4384154125 creator A5012997021 @default.
- W4384154125 creator A5058118943 @default.
- W4384154125 date "2023-07-13" @default.
- W4384154125 modified "2023-10-14" @default.
- W4384154125 title "<scp>DHHoE</scp>: Deep hybrid homogenous ensemble for digital histological breast cancer classification" @default.
- W4384154125 cites W1507763842 @default.
- W4384154125 cites W2011549131 @default.
- W4384154125 cites W2294326006 @default.
- W4384154125 cites W2344480160 @default.
- W4384154125 cites W2516246192 @default.
- W4384154125 cites W2754995126 @default.
- W4384154125 cites W2801540580 @default.
- W4384154125 cites W2900257566 @default.
- W4384154125 cites W2914762504 @default.
- W4384154125 cites W2945819472 @default.
- W4384154125 cites W2954665897 @default.
- W4384154125 cites W2981322795 @default.
- W4384154125 cites W2995106101 @default.
- W4384154125 cites W2997538866 @default.
- W4384154125 cites W3038784327 @default.
- W4384154125 cites W3046154346 @default.
- W4384154125 cites W3047083963 @default.
- W4384154125 cites W3095595608 @default.
- W4384154125 cites W3120006163 @default.
- W4384154125 cites W3130637596 @default.
- W4384154125 cites W3166555319 @default.
- W4384154125 cites W3199579264 @default.
- W4384154125 cites W3201054345 @default.
- W4384154125 cites W3209220738 @default.
- W4384154125 cites W4200483382 @default.
- W4384154125 cites W4200584507 @default.
- W4384154125 cites W4285412802 @default.
- W4384154125 cites W4306754912 @default.
- W4384154125 doi "https://doi.org/10.1111/exsy.13397" @default.
- W4384154125 hasPublicationYear "2023" @default.
- W4384154125 type Work @default.
- W4384154125 citedByCount "0" @default.
- W4384154125 crossrefType "journal-article" @default.
- W4384154125 hasAuthorship W4384154125A5000218612 @default.
- W4384154125 hasAuthorship W4384154125A5012997021 @default.
- W4384154125 hasAuthorship W4384154125A5058118943 @default.
- W4384154125 hasBestOaLocation W43841541251 @default.
- W4384154125 hasConcept C108583219 @default.
- W4384154125 hasConcept C119857082 @default.
- W4384154125 hasConcept C119898033 @default.
- W4384154125 hasConcept C121608353 @default.
- W4384154125 hasConcept C12267149 @default.
- W4384154125 hasConcept C126322002 @default.
- W4384154125 hasConcept C153180895 @default.
- W4384154125 hasConcept C154945302 @default.
- W4384154125 hasConcept C27181475 @default.
- W4384154125 hasConcept C2777522853 @default.
- W4384154125 hasConcept C2984842247 @default.
- W4384154125 hasConcept C41008148 @default.
- W4384154125 hasConcept C45942800 @default.
- W4384154125 hasConcept C46686674 @default.
- W4384154125 hasConcept C530470458 @default.
- W4384154125 hasConcept C71924100 @default.
- W4384154125 hasConceptScore W4384154125C108583219 @default.
- W4384154125 hasConceptScore W4384154125C119857082 @default.
- W4384154125 hasConceptScore W4384154125C119898033 @default.
- W4384154125 hasConceptScore W4384154125C121608353 @default.
- W4384154125 hasConceptScore W4384154125C12267149 @default.
- W4384154125 hasConceptScore W4384154125C126322002 @default.
- W4384154125 hasConceptScore W4384154125C153180895 @default.
- W4384154125 hasConceptScore W4384154125C154945302 @default.
- W4384154125 hasConceptScore W4384154125C27181475 @default.
- W4384154125 hasConceptScore W4384154125C2777522853 @default.
- W4384154125 hasConceptScore W4384154125C2984842247 @default.
- W4384154125 hasConceptScore W4384154125C41008148 @default.
- W4384154125 hasConceptScore W4384154125C45942800 @default.
- W4384154125 hasConceptScore W4384154125C46686674 @default.
- W4384154125 hasConceptScore W4384154125C530470458 @default.
- W4384154125 hasConceptScore W4384154125C71924100 @default.
- W4384154125 hasLocation W43841541251 @default.
- W4384154125 hasOpenAccess W4384154125 @default.
- W4384154125 hasPrimaryLocation W43841541251 @default.
- W4384154125 hasRelatedWork W1996541855 @default.
- W4384154125 hasRelatedWork W2810053714 @default.
- W4384154125 hasRelatedWork W3136979370 @default.
- W4384154125 hasRelatedWork W3195168932 @default.
- W4384154125 hasRelatedWork W4285741730 @default.
- W4384154125 hasRelatedWork W4308112567 @default.
- W4384154125 hasRelatedWork W4313488044 @default.
- W4384154125 hasRelatedWork W4320484903 @default.
- W4384154125 hasRelatedWork W4382345315 @default.
- W4384154125 hasRelatedWork W4384154125 @default.
- W4384154125 isParatext "false" @default.
- W4384154125 isRetracted "false" @default.
- W4384154125 workType "article" @default.