Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384156198> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4384156198 abstract "We present near-optimal algorithms for detecting small vertex cuts in the $${textsf{CONGEST}}$$ model of distributed computing. Despite extensive research in this area, our understanding of the vertex connectivity of a graph is still incomplete, especially in the distributed setting. To this date, all distributed algorithms for detecting cut vertices suffer from an inherent dependency in the maximum degree of the graph, $$Delta $$ . Hence, in particular, there is no truly sub-linear time algorithm for this problem, not even for detecting a single cut vertex. We take a new algorithmic approach for vertex connectivity which allows us to bypass the existing $$Delta $$ barrier. As a warm-up to our approach, we show a simple $$widetilde{O}(D)$$ -round randomized algorithm for computing all cut vertices in a D-diameter n-vertex graph. This improves upon the $$O(D+Delta /log n)$$ -round algorithm of [Pritchard and Thurimella, ICALP 2008]. Our key technical contribution is an $$widetilde{O}(D)$$ -round randomized algorithm for computing all cut pairs in the graph, improving upon the state-of-the-art $$O(Delta cdot D)^4$$ -round algorithm by [Parter, DISC ’19]. Note that even for the considerably simpler setting of edge cuts, currently $$widetilde{O}(D)$$ -round algorithms are known only for detecting pairs of cut edges. Our approach is based on employing the well-known linear graph sketching technique [Ahn, Guha and McGregor, SODA 2012] along with the heavy-light tree decomposition of [Sleator and Tarjan, STOC 1981]. Combining this with a careful characterization of the survivable subgraphs, allows us to determine the connectivity of $$G {setminus } {x,y}$$ for every pair $$x,y in V$$ , using $$widetilde{O}(D)$$ -rounds. We believe that the tools provided in this paper are useful for omitting the $$Delta $$ -dependency even for larger cut values." @default.
- W4384156198 created "2023-07-14" @default.
- W4384156198 creator A5014977219 @default.
- W4384156198 creator A5022875077 @default.
- W4384156198 date "2023-07-14" @default.
- W4384156198 modified "2023-09-27" @default.
- W4384156198 title "Near-optimal distributed computation of small vertex cuts" @default.
- W4384156198 cites W1974912205 @default.
- W4384156198 cites W1975832752 @default.
- W4384156198 cites W1982792741 @default.
- W4384156198 cites W1994556169 @default.
- W4384156198 cites W2002723731 @default.
- W4384156198 cites W2018804864 @default.
- W4384156198 cites W2024366499 @default.
- W4384156198 cites W2026486940 @default.
- W4384156198 cites W2026798971 @default.
- W4384156198 cites W2066811549 @default.
- W4384156198 cites W2071346873 @default.
- W4384156198 cites W2084427019 @default.
- W4384156198 cites W2118382442 @default.
- W4384156198 cites W2150516767 @default.
- W4384156198 cites W2287845547 @default.
- W4384156198 cites W2484480607 @default.
- W4384156198 cites W2488670996 @default.
- W4384156198 cites W2964010100 @default.
- W4384156198 cites W3000941460 @default.
- W4384156198 cites W3115120381 @default.
- W4384156198 cites W3166491318 @default.
- W4384156198 cites W3168134475 @default.
- W4384156198 cites W3183996897 @default.
- W4384156198 cites W4205300528 @default.
- W4384156198 cites W4205550388 @default.
- W4384156198 cites W4230889046 @default.
- W4384156198 cites W4238411931 @default.
- W4384156198 cites W4244278461 @default.
- W4384156198 cites W4254419859 @default.
- W4384156198 cites W4307416302 @default.
- W4384156198 cites W4313203312 @default.
- W4384156198 doi "https://doi.org/10.1007/s00446-023-00455-z" @default.
- W4384156198 hasPublicationYear "2023" @default.
- W4384156198 type Work @default.
- W4384156198 citedByCount "0" @default.
- W4384156198 crossrefType "journal-article" @default.
- W4384156198 hasAuthorship W4384156198A5014977219 @default.
- W4384156198 hasAuthorship W4384156198A5022875077 @default.
- W4384156198 hasBestOaLocation W43841561981 @default.
- W4384156198 hasConcept C11413529 @default.
- W4384156198 hasConcept C114614502 @default.
- W4384156198 hasConcept C118615104 @default.
- W4384156198 hasConcept C120314980 @default.
- W4384156198 hasConcept C128669082 @default.
- W4384156198 hasConcept C130120984 @default.
- W4384156198 hasConcept C132525143 @default.
- W4384156198 hasConcept C33923547 @default.
- W4384156198 hasConcept C41008148 @default.
- W4384156198 hasConcept C45374587 @default.
- W4384156198 hasConcept C80899671 @default.
- W4384156198 hasConceptScore W4384156198C11413529 @default.
- W4384156198 hasConceptScore W4384156198C114614502 @default.
- W4384156198 hasConceptScore W4384156198C118615104 @default.
- W4384156198 hasConceptScore W4384156198C120314980 @default.
- W4384156198 hasConceptScore W4384156198C128669082 @default.
- W4384156198 hasConceptScore W4384156198C130120984 @default.
- W4384156198 hasConceptScore W4384156198C132525143 @default.
- W4384156198 hasConceptScore W4384156198C33923547 @default.
- W4384156198 hasConceptScore W4384156198C41008148 @default.
- W4384156198 hasConceptScore W4384156198C45374587 @default.
- W4384156198 hasConceptScore W4384156198C80899671 @default.
- W4384156198 hasLocation W43841561981 @default.
- W4384156198 hasLocation W43841561982 @default.
- W4384156198 hasOpenAccess W4384156198 @default.
- W4384156198 hasPrimaryLocation W43841561981 @default.
- W4384156198 hasRelatedWork W1719252778 @default.
- W4384156198 hasRelatedWork W2003008160 @default.
- W4384156198 hasRelatedWork W2031098440 @default.
- W4384156198 hasRelatedWork W2381713449 @default.
- W4384156198 hasRelatedWork W2466894780 @default.
- W4384156198 hasRelatedWork W2731724293 @default.
- W4384156198 hasRelatedWork W2904724461 @default.
- W4384156198 hasRelatedWork W3092119098 @default.
- W4384156198 hasRelatedWork W4307385446 @default.
- W4384156198 hasRelatedWork W922283457 @default.
- W4384156198 isParatext "false" @default.
- W4384156198 isRetracted "false" @default.
- W4384156198 workType "article" @default.