Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384156620> ?p ?o ?g. }
- W4384156620 endingPage "118997" @default.
- W4384156620 startingPage "118997" @default.
- W4384156620 abstract "Short-term photovoltaic (PV) power forecasting is essential for integrating renewable energy sources into the grid as it provides accurate and timely information on the expected output of PV systems. Deep learning (DL) networks have shown promising results in this area, but depending on the weather conditions and the particularities of each PV system, different DL architectures may perform best. This paper proposes a meta-learning method to improve one-hour-ahead deterministic forecasts of PV systems by dynamically blending the base forecasts of multiple DL models to learn under what conditions each model performs best. Four base models of different long short-term memory architectures are used to produce PV production forecasts without using numerical weather predictions, with the objective to enhance the generalizability of the proposed solution. The accuracy of the meta-learner is evaluated using three rooftop PV systems in Lisbon, Portugal. Results indicate that different base models perform best at different PV plants, and meta-learning can improve accuracy by up to 5% over the most accurate base model per plant and up to 4.5% over the equal-weighted combination of the base forecasts. These improvements are statistically significant and even larger during peak production hours." @default.
- W4384156620 created "2023-07-14" @default.
- W4384156620 creator A5008411897 @default.
- W4384156620 creator A5015832946 @default.
- W4384156620 creator A5058865022 @default.
- W4384156620 creator A5059115129 @default.
- W4384156620 creator A5092460305 @default.
- W4384156620 date "2023-11-01" @default.
- W4384156620 modified "2023-10-09" @default.
- W4384156620 title "Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models" @default.
- W4384156620 cites W2021358089 @default.
- W4384156620 cites W2021540113 @default.
- W4384156620 cites W2024692966 @default.
- W4384156620 cites W2042506099 @default.
- W4384156620 cites W2054761777 @default.
- W4384156620 cites W2068448163 @default.
- W4384156620 cites W2069143585 @default.
- W4384156620 cites W2070826863 @default.
- W4384156620 cites W2073315161 @default.
- W4384156620 cites W2076077531 @default.
- W4384156620 cites W2079547580 @default.
- W4384156620 cites W2079735306 @default.
- W4384156620 cites W2112200670 @default.
- W4384156620 cites W2122585011 @default.
- W4384156620 cites W2131774270 @default.
- W4384156620 cites W2142809749 @default.
- W4384156620 cites W2278589437 @default.
- W4384156620 cites W2402682637 @default.
- W4384156620 cites W2469734051 @default.
- W4384156620 cites W2474462936 @default.
- W4384156620 cites W2524035252 @default.
- W4384156620 cites W2556605533 @default.
- W4384156620 cites W2561807722 @default.
- W4384156620 cites W2614843160 @default.
- W4384156620 cites W2622826443 @default.
- W4384156620 cites W2751698537 @default.
- W4384156620 cites W2768305095 @default.
- W4384156620 cites W2773629498 @default.
- W4384156620 cites W2791817222 @default.
- W4384156620 cites W2795242388 @default.
- W4384156620 cites W2801596954 @default.
- W4384156620 cites W2804522644 @default.
- W4384156620 cites W2834494841 @default.
- W4384156620 cites W28412257 @default.
- W4384156620 cites W2888165363 @default.
- W4384156620 cites W2889332951 @default.
- W4384156620 cites W2894821558 @default.
- W4384156620 cites W2903265999 @default.
- W4384156620 cites W2909973217 @default.
- W4384156620 cites W2910849319 @default.
- W4384156620 cites W2912623183 @default.
- W4384156620 cites W2917491574 @default.
- W4384156620 cites W2919115771 @default.
- W4384156620 cites W2922600997 @default.
- W4384156620 cites W2941116662 @default.
- W4384156620 cites W2944920662 @default.
- W4384156620 cites W2950072808 @default.
- W4384156620 cites W2955010283 @default.
- W4384156620 cites W2956074973 @default.
- W4384156620 cites W2963507686 @default.
- W4384156620 cites W2965284298 @default.
- W4384156620 cites W2982191044 @default.
- W4384156620 cites W2990430732 @default.
- W4384156620 cites W2994807146 @default.
- W4384156620 cites W2996784533 @default.
- W4384156620 cites W2997135317 @default.
- W4384156620 cites W2997684871 @default.
- W4384156620 cites W3009377873 @default.
- W4384156620 cites W3011903352 @default.
- W4384156620 cites W3016208458 @default.
- W4384156620 cites W3017116930 @default.
- W4384156620 cites W3022013598 @default.
- W4384156620 cites W3036614699 @default.
- W4384156620 cites W3044019043 @default.
- W4384156620 cites W3108854659 @default.
- W4384156620 cites W3113065744 @default.
- W4384156620 cites W3120853195 @default.
- W4384156620 cites W3123933050 @default.
- W4384156620 cites W3130453397 @default.
- W4384156620 cites W3132877627 @default.
- W4384156620 cites W3134570487 @default.
- W4384156620 cites W3149578452 @default.
- W4384156620 cites W3156852043 @default.
- W4384156620 cites W3157175643 @default.
- W4384156620 cites W3158587206 @default.
- W4384156620 cites W3188498720 @default.
- W4384156620 cites W3206725780 @default.
- W4384156620 cites W3210135557 @default.
- W4384156620 cites W3210899317 @default.
- W4384156620 cites W4200135789 @default.
- W4384156620 cites W4200516166 @default.
- W4384156620 cites W4200550314 @default.
- W4384156620 cites W4206189171 @default.
- W4384156620 cites W4206699374 @default.
- W4384156620 cites W4210464014 @default.
- W4384156620 cites W4220726206 @default.
- W4384156620 cites W4225380154 @default.
- W4384156620 cites W4231109964 @default.