Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384156941> ?p ?o ?g. }
- W4384156941 endingPage "946" @default.
- W4384156941 startingPage "932" @default.
- W4384156941 abstract "An accurate carbon price prediction is vital for governments to formulate emission reduction policies and for corporate managers to carry out sustainable management. Although many models have been proposed to meet this purpose, there is still a lack of comprehensive comparisons among the key competing models in a single study. This study conducted a comprehensive evaluation of six feature selection methods and six machine learning models for carbon price prediction, and then proposed a novel data-driven hybrid model that integrates singular spectrum analysis, random forest, and long short-term memory neural network. The results show that random forest and long short-term memory neural networks are the most competitive feature selection and prediction models, respectively. It is more reasonable to construct the model’s input by comprehensively considering variables’ short-, medium-, and long-term features. When the recombination value is approximately half the length of the embedding window, the singular spectrum analysis is most conducive to improving the prediction accuracy. The hybrid model proposed is always significantly superior to other benchmark models. Our work contributes to guiding carbon price modeling to help regulators and managers accurately grasp carbon price signals." @default.
- W4384156941 created "2023-07-14" @default.
- W4384156941 creator A5003679114 @default.
- W4384156941 creator A5080175893 @default.
- W4384156941 date "2023-09-01" @default.
- W4384156941 modified "2023-09-28" @default.
- W4384156941 title "Carbon prices forecasting based on the singular spectrum analysis, feature selection, and deep learning: Toward a unified view" @default.
- W4384156941 cites W2028068740 @default.
- W4384156941 cites W2060629445 @default.
- W4384156941 cites W2121410881 @default.
- W4384156941 cites W2210146131 @default.
- W4384156941 cites W2338301930 @default.
- W4384156941 cites W2341049598 @default.
- W4384156941 cites W2586354609 @default.
- W4384156941 cites W2745266534 @default.
- W4384156941 cites W2765937321 @default.
- W4384156941 cites W2770138528 @default.
- W4384156941 cites W2781854549 @default.
- W4384156941 cites W2793226986 @default.
- W4384156941 cites W2796045805 @default.
- W4384156941 cites W2884662657 @default.
- W4384156941 cites W2890866454 @default.
- W4384156941 cites W2892340710 @default.
- W4384156941 cites W2895861596 @default.
- W4384156941 cites W2902424050 @default.
- W4384156941 cites W2904390847 @default.
- W4384156941 cites W2946494228 @default.
- W4384156941 cites W2971498716 @default.
- W4384156941 cites W2975025053 @default.
- W4384156941 cites W2977046100 @default.
- W4384156941 cites W2979028505 @default.
- W4384156941 cites W2979601510 @default.
- W4384156941 cites W2999406639 @default.
- W4384156941 cites W3003244946 @default.
- W4384156941 cites W3004627076 @default.
- W4384156941 cites W3011112883 @default.
- W4384156941 cites W3039032335 @default.
- W4384156941 cites W3090773633 @default.
- W4384156941 cites W3092432626 @default.
- W4384156941 cites W3094915885 @default.
- W4384156941 cites W3114493467 @default.
- W4384156941 cites W3118070213 @default.
- W4384156941 cites W3122209442 @default.
- W4384156941 cites W3124142770 @default.
- W4384156941 cites W3125368651 @default.
- W4384156941 cites W3136181760 @default.
- W4384156941 cites W3161127832 @default.
- W4384156941 cites W3202029859 @default.
- W4384156941 cites W3206778527 @default.
- W4384156941 cites W4200090319 @default.
- W4384156941 cites W4210457160 @default.
- W4384156941 cites W4213265320 @default.
- W4384156941 cites W4221124615 @default.
- W4384156941 cites W4223553247 @default.
- W4384156941 cites W4281769461 @default.
- W4384156941 cites W4283362261 @default.
- W4384156941 cites W4283758841 @default.
- W4384156941 cites W4283816078 @default.
- W4384156941 cites W4285987744 @default.
- W4384156941 cites W4287448629 @default.
- W4384156941 cites W4290038653 @default.
- W4384156941 cites W4292266167 @default.
- W4384156941 cites W4295763250 @default.
- W4384156941 cites W4308951285 @default.
- W4384156941 cites W4313197748 @default.
- W4384156941 cites W4313463129 @default.
- W4384156941 cites W4320521692 @default.
- W4384156941 doi "https://doi.org/10.1016/j.psep.2023.07.015" @default.
- W4384156941 hasPublicationYear "2023" @default.
- W4384156941 type Work @default.
- W4384156941 citedByCount "0" @default.
- W4384156941 crossrefType "journal-article" @default.
- W4384156941 hasAuthorship W4384156941A5003679114 @default.
- W4384156941 hasAuthorship W4384156941A5080175893 @default.
- W4384156941 hasConcept C119857082 @default.
- W4384156941 hasConcept C13280743 @default.
- W4384156941 hasConcept C136272165 @default.
- W4384156941 hasConcept C138885662 @default.
- W4384156941 hasConcept C148483581 @default.
- W4384156941 hasConcept C149782125 @default.
- W4384156941 hasConcept C154945302 @default.
- W4384156941 hasConcept C162324750 @default.
- W4384156941 hasConcept C169258074 @default.
- W4384156941 hasConcept C185798385 @default.
- W4384156941 hasConcept C18903297 @default.
- W4384156941 hasConcept C205649164 @default.
- W4384156941 hasConcept C22789450 @default.
- W4384156941 hasConcept C2776401178 @default.
- W4384156941 hasConcept C2779200991 @default.
- W4384156941 hasConcept C41008148 @default.
- W4384156941 hasConcept C41608201 @default.
- W4384156941 hasConcept C41895202 @default.
- W4384156941 hasConcept C47737302 @default.
- W4384156941 hasConcept C50644808 @default.
- W4384156941 hasConcept C81917197 @default.
- W4384156941 hasConcept C86803240 @default.
- W4384156941 hasConceptScore W4384156941C119857082 @default.
- W4384156941 hasConceptScore W4384156941C13280743 @default.