Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384158768> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4384158768 abstract "The low complexity levels of IoT devices increase vulnerability and expose low-cost devices to possible cyber at-tacks, especially voted to data breaches. The adoption of machine learning algorithms to overcome such an issue onboard could result in an extensive use of their hardware capabilities, possibly limiting their primary goal in the network they are involved. To this aim, the paper proposes a gateway-like detection system, based on the usage of lightweight and open-source measurement software and a very straightforward rule-based detector, to implement on very low-cost devices to prevent intrusion for data stealing purposes. The advantage of the proposed solution is its applicability to different data streams, from interactive to asyn-chronous traffic typologies, and the simplicity of the detection mechanism: no specific hardware-related compatibility issues, very low memory footprint, and CPU usage burden, allowing the procedure to safely work in background mode and no need to decrypt data content, warranting privacy to the user. The adopted traffic measurement software is CICFlowMeter and the rule-based detector is implemented in Python language. Obtained performance highlights a 98.1% accuracy and 96.4% sensitivity in test conditions, keeping the running time significantly lower than most common machine learning techniques. To quantify the impact on the execution time, several experiments were carried out on a very popular processing system (i.e. Raspberry PI), and in some cases, one order of magnitude has been gained concerning machine learning techniques." @default.
- W4384158768 created "2023-07-14" @default.
- W4384158768 creator A5000692611 @default.
- W4384158768 creator A5019623187 @default.
- W4384158768 creator A5020852460 @default.
- W4384158768 creator A5036125291 @default.
- W4384158768 creator A5039059946 @default.
- W4384158768 creator A5058118488 @default.
- W4384158768 date "2023-05-22" @default.
- W4384158768 modified "2023-09-26" @default.
- W4384158768 title "A measurement method for intrusion detection in cyber IoT data stealing attacks" @default.
- W4384158768 cites W1977428390 @default.
- W4384158768 cites W2002601942 @default.
- W4384158768 cites W2026590079 @default.
- W4384158768 cites W2124678464 @default.
- W4384158768 cites W2129880807 @default.
- W4384158768 cites W2515701833 @default.
- W4384158768 cites W2765347422 @default.
- W4384158768 cites W2891512841 @default.
- W4384158768 cites W2913811025 @default.
- W4384158768 cites W2921019731 @default.
- W4384158768 cites W2943073010 @default.
- W4384158768 cites W2967796070 @default.
- W4384158768 cites W2994922757 @default.
- W4384158768 cites W2997258927 @default.
- W4384158768 cites W3005444580 @default.
- W4384158768 cites W3087958975 @default.
- W4384158768 cites W3108671495 @default.
- W4384158768 cites W3113471021 @default.
- W4384158768 cites W4292862253 @default.
- W4384158768 cites W4292869908 @default.
- W4384158768 cites W4293246056 @default.
- W4384158768 cites W4297098538 @default.
- W4384158768 cites W4297099940 @default.
- W4384158768 doi "https://doi.org/10.1109/i2mtc53148.2023.10175888" @default.
- W4384158768 hasPublicationYear "2023" @default.
- W4384158768 type Work @default.
- W4384158768 citedByCount "0" @default.
- W4384158768 crossrefType "proceedings-article" @default.
- W4384158768 hasAuthorship W4384158768A5000692611 @default.
- W4384158768 hasAuthorship W4384158768A5019623187 @default.
- W4384158768 hasAuthorship W4384158768A5020852460 @default.
- W4384158768 hasAuthorship W4384158768A5036125291 @default.
- W4384158768 hasAuthorship W4384158768A5039059946 @default.
- W4384158768 hasAuthorship W4384158768A5058118488 @default.
- W4384158768 hasConcept C111919701 @default.
- W4384158768 hasConcept C148730421 @default.
- W4384158768 hasConcept C149635348 @default.
- W4384158768 hasConcept C2777904410 @default.
- W4384158768 hasConcept C35525427 @default.
- W4384158768 hasConcept C38652104 @default.
- W4384158768 hasConcept C41008148 @default.
- W4384158768 hasConcept C519991488 @default.
- W4384158768 hasConcept C74912251 @default.
- W4384158768 hasConcept C79403827 @default.
- W4384158768 hasConceptScore W4384158768C111919701 @default.
- W4384158768 hasConceptScore W4384158768C148730421 @default.
- W4384158768 hasConceptScore W4384158768C149635348 @default.
- W4384158768 hasConceptScore W4384158768C2777904410 @default.
- W4384158768 hasConceptScore W4384158768C35525427 @default.
- W4384158768 hasConceptScore W4384158768C38652104 @default.
- W4384158768 hasConceptScore W4384158768C41008148 @default.
- W4384158768 hasConceptScore W4384158768C519991488 @default.
- W4384158768 hasConceptScore W4384158768C74912251 @default.
- W4384158768 hasConceptScore W4384158768C79403827 @default.
- W4384158768 hasLocation W43841587681 @default.
- W4384158768 hasOpenAccess W4384158768 @default.
- W4384158768 hasPrimaryLocation W43841587681 @default.
- W4384158768 hasRelatedWork W2090215046 @default.
- W4384158768 hasRelatedWork W2109332972 @default.
- W4384158768 hasRelatedWork W2110890874 @default.
- W4384158768 hasRelatedWork W2161954659 @default.
- W4384158768 hasRelatedWork W2351252967 @default.
- W4384158768 hasRelatedWork W2362737126 @default.
- W4384158768 hasRelatedWork W2373866020 @default.
- W4384158768 hasRelatedWork W2529681551 @default.
- W4384158768 hasRelatedWork W77035938 @default.
- W4384158768 hasRelatedWork W589165813 @default.
- W4384158768 isParatext "false" @default.
- W4384158768 isRetracted "false" @default.
- W4384158768 workType "article" @default.