Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384161787> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4384161787 endingPage "1" @default.
- W4384161787 startingPage "1" @default.
- W4384161787 abstract "As an emerging and promising network paradigm, network slicing creates multiple logical networks on shared infrastructure to provide services with customized Quality-of-Service (QoS) for heterogeneous devices and applications. However, network complexity and service heterogeneity pose a huge challenge in achieving optimal performance and ensuring stringent QoS requirements. In this paper, we design a hierarchical deep reinforcement learning based 5G radio access network slicing framework to achieve scalable and efficient resource allocation. By decomposing the resource allocation problem into a slice-level task and several user-level tasks, the proposed framework tackles each task with an agent, thus conquering insufficient exploration and achieving scalable management. Knowledge transfer and progressive learning are employed to improve training efficiency and stability, respectively. We apply collaborative training to eliminate distribution mismatch by refining value approximators and policies of agents alternately. Extensive experiments show that the proposed framework can learn effective resource allocation policies stably and efficiently and outperform other methods in network utility maximization and QoS assurance, which improves the network utility by 25% and 8% compared with the random strategy and the ADMM strategy, respectively. Furthermore, we validate that our framework is more robust to changes in network traffic conditions including network congestion." @default.
- W4384161787 created "2023-07-14" @default.
- W4384161787 creator A5021637761 @default.
- W4384161787 creator A5024793874 @default.
- W4384161787 creator A5040803715 @default.
- W4384161787 creator A5068195118 @default.
- W4384161787 creator A5074511454 @default.
- W4384161787 creator A5079378336 @default.
- W4384161787 date "2023-01-01" @default.
- W4384161787 modified "2023-10-18" @default.
- W4384161787 title "Towards Scalable and Efficient Hierarchical Deep Reinforcement Learning for 5G RAN Slicing" @default.
- W4384161787 doi "https://doi.org/10.1109/tgcn.2023.3295341" @default.
- W4384161787 hasPublicationYear "2023" @default.
- W4384161787 type Work @default.
- W4384161787 citedByCount "0" @default.
- W4384161787 crossrefType "journal-article" @default.
- W4384161787 hasAuthorship W4384161787A5021637761 @default.
- W4384161787 hasAuthorship W4384161787A5024793874 @default.
- W4384161787 hasAuthorship W4384161787A5040803715 @default.
- W4384161787 hasAuthorship W4384161787A5068195118 @default.
- W4384161787 hasAuthorship W4384161787A5074511454 @default.
- W4384161787 hasAuthorship W4384161787A5079378336 @default.
- W4384161787 hasConcept C108037233 @default.
- W4384161787 hasConcept C120314980 @default.
- W4384161787 hasConcept C136764020 @default.
- W4384161787 hasConcept C154945302 @default.
- W4384161787 hasConcept C158207573 @default.
- W4384161787 hasConcept C162324750 @default.
- W4384161787 hasConcept C187736073 @default.
- W4384161787 hasConcept C2776190703 @default.
- W4384161787 hasConcept C2780451532 @default.
- W4384161787 hasConcept C2780609101 @default.
- W4384161787 hasConcept C29202148 @default.
- W4384161787 hasConcept C31258907 @default.
- W4384161787 hasConcept C41008148 @default.
- W4384161787 hasConcept C48044578 @default.
- W4384161787 hasConcept C5119721 @default.
- W4384161787 hasConcept C555944384 @default.
- W4384161787 hasConcept C76155785 @default.
- W4384161787 hasConcept C77088390 @default.
- W4384161787 hasConcept C97541855 @default.
- W4384161787 hasConceptScore W4384161787C108037233 @default.
- W4384161787 hasConceptScore W4384161787C120314980 @default.
- W4384161787 hasConceptScore W4384161787C136764020 @default.
- W4384161787 hasConceptScore W4384161787C154945302 @default.
- W4384161787 hasConceptScore W4384161787C158207573 @default.
- W4384161787 hasConceptScore W4384161787C162324750 @default.
- W4384161787 hasConceptScore W4384161787C187736073 @default.
- W4384161787 hasConceptScore W4384161787C2776190703 @default.
- W4384161787 hasConceptScore W4384161787C2780451532 @default.
- W4384161787 hasConceptScore W4384161787C2780609101 @default.
- W4384161787 hasConceptScore W4384161787C29202148 @default.
- W4384161787 hasConceptScore W4384161787C31258907 @default.
- W4384161787 hasConceptScore W4384161787C41008148 @default.
- W4384161787 hasConceptScore W4384161787C48044578 @default.
- W4384161787 hasConceptScore W4384161787C5119721 @default.
- W4384161787 hasConceptScore W4384161787C555944384 @default.
- W4384161787 hasConceptScore W4384161787C76155785 @default.
- W4384161787 hasConceptScore W4384161787C77088390 @default.
- W4384161787 hasConceptScore W4384161787C97541855 @default.
- W4384161787 hasFunder F4320321001 @default.
- W4384161787 hasFunder F4320335777 @default.
- W4384161787 hasFunder F4320335787 @default.
- W4384161787 hasLocation W43841617871 @default.
- W4384161787 hasOpenAccess W4384161787 @default.
- W4384161787 hasPrimaryLocation W43841617871 @default.
- W4384161787 hasRelatedWork W1568263432 @default.
- W4384161787 hasRelatedWork W1582107257 @default.
- W4384161787 hasRelatedWork W1759630569 @default.
- W4384161787 hasRelatedWork W2122443272 @default.
- W4384161787 hasRelatedWork W2376125216 @default.
- W4384161787 hasRelatedWork W2394465510 @default.
- W4384161787 hasRelatedWork W4295941380 @default.
- W4384161787 hasRelatedWork W4362709110 @default.
- W4384161787 hasRelatedWork W4384518462 @default.
- W4384161787 hasRelatedWork W2461727797 @default.
- W4384161787 isParatext "false" @default.
- W4384161787 isRetracted "false" @default.
- W4384161787 workType "article" @default.