Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384161803> ?p ?o ?g. }
- W4384161803 endingPage "e0288656" @default.
- W4384161803 startingPage "e0288656" @default.
- W4384161803 abstract "Introduction Increasingly, Fourier-transform infrared (FTIR) spectroscopy is being used as a harm reduction tool to provide people who use drugs real-time information about the contents of their substances. However, FTIR spectroscopy has been shown to have a high detection limit for fentanyl and interpretation of results by a technician can be subjective. This poses concern, given that some synthetic opioids can produce serious toxicity at sub-detectable levels. The objective of this study was to develop a neural network model to identify fentanyl and related analogues more accurately in drug samples compared to traditional analysis by technicians. Methods Data were drawn from samples analyzed point-of-care using combination FTIR spectroscopy and fentanyl immunoassay strips in British Columbia between August 2018 and January 2021. We developed neural network models to predict the presence of fentanyl based on FTIR data. The final model was validated against the results from immunoassay strips. Prediction performance was assessed using F1 score, accuracy, and area under the receiver-operating characteristic curve (AUROC), and was compared to results obtained from analysis by technicians. Results A total of 12,684 samples were included. The neural network model outperformed results from those analyzed by technicians, with an F1 score of 96.4% and an accuracy of 96.4%, compared to 78.4% and 82.4% with a technician, respectively. The AUROC of the model was 99.0%. Fentanyl positive samples correctly detected by the model but not by the technician were typically those with low fentanyl concentrations (median: 2.3% quantity by weight; quartile 1–3: 0.0%-4.6%). Discussion Neural network models can accurately predict the presence of fentanyl and related analogues using FTIR data, including samples with low fentanyl concentrations. Integrating this tool within drug checking services utilizing FTIR spectroscopy has the potential to improve decision making to reduce the risk of overdose and other negative health outcomes." @default.
- W4384161803 created "2023-07-14" @default.
- W4384161803 creator A5005679133 @default.
- W4384161803 creator A5010261685 @default.
- W4384161803 creator A5022050244 @default.
- W4384161803 creator A5037309315 @default.
- W4384161803 creator A5071343033 @default.
- W4384161803 creator A5088652910 @default.
- W4384161803 date "2023-07-13" @default.
- W4384161803 modified "2023-09-25" @default.
- W4384161803 title "Development of a neural network model to predict the presence of fentanyl in community drug samples" @default.
- W4384161803 cites W2276234421 @default.
- W4384161803 cites W2605459466 @default.
- W4384161803 cites W2742111340 @default.
- W4384161803 cites W2749659397 @default.
- W4384161803 cites W2774267522 @default.
- W4384161803 cites W2786318720 @default.
- W4384161803 cites W2884604272 @default.
- W4384161803 cites W2891271377 @default.
- W4384161803 cites W2897909773 @default.
- W4384161803 cites W2953532875 @default.
- W4384161803 cites W2955053048 @default.
- W4384161803 cites W2990407838 @default.
- W4384161803 cites W2997177964 @default.
- W4384161803 cites W2999590655 @default.
- W4384161803 cites W3011704066 @default.
- W4384161803 cites W3025245280 @default.
- W4384161803 cites W3038004684 @default.
- W4384161803 cites W3085069665 @default.
- W4384161803 cites W3089819255 @default.
- W4384161803 cites W3113261358 @default.
- W4384161803 cites W3129703429 @default.
- W4384161803 cites W3134216738 @default.
- W4384161803 cites W3158340660 @default.
- W4384161803 cites W3162770241 @default.
- W4384161803 cites W3195433076 @default.
- W4384161803 cites W3208716282 @default.
- W4384161803 doi "https://doi.org/10.1371/journal.pone.0288656" @default.
- W4384161803 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37440523" @default.
- W4384161803 hasPublicationYear "2023" @default.
- W4384161803 type Work @default.
- W4384161803 citedByCount "0" @default.
- W4384161803 crossrefType "journal-article" @default.
- W4384161803 hasAuthorship W4384161803A5005679133 @default.
- W4384161803 hasAuthorship W4384161803A5010261685 @default.
- W4384161803 hasAuthorship W4384161803A5022050244 @default.
- W4384161803 hasAuthorship W4384161803A5037309315 @default.
- W4384161803 hasAuthorship W4384161803A5071343033 @default.
- W4384161803 hasAuthorship W4384161803A5088652910 @default.
- W4384161803 hasBestOaLocation W43841618031 @default.
- W4384161803 hasConcept C119599485 @default.
- W4384161803 hasConcept C126322002 @default.
- W4384161803 hasConcept C127413603 @default.
- W4384161803 hasConcept C136229726 @default.
- W4384161803 hasConcept C154945302 @default.
- W4384161803 hasConcept C160892712 @default.
- W4384161803 hasConcept C192562407 @default.
- W4384161803 hasConcept C2776229289 @default.
- W4384161803 hasConcept C2781072394 @default.
- W4384161803 hasConcept C41008148 @default.
- W4384161803 hasConcept C42219234 @default.
- W4384161803 hasConcept C42360764 @default.
- W4384161803 hasConcept C58471807 @default.
- W4384161803 hasConcept C71924100 @default.
- W4384161803 hasConceptScore W4384161803C119599485 @default.
- W4384161803 hasConceptScore W4384161803C126322002 @default.
- W4384161803 hasConceptScore W4384161803C127413603 @default.
- W4384161803 hasConceptScore W4384161803C136229726 @default.
- W4384161803 hasConceptScore W4384161803C154945302 @default.
- W4384161803 hasConceptScore W4384161803C160892712 @default.
- W4384161803 hasConceptScore W4384161803C192562407 @default.
- W4384161803 hasConceptScore W4384161803C2776229289 @default.
- W4384161803 hasConceptScore W4384161803C2781072394 @default.
- W4384161803 hasConceptScore W4384161803C41008148 @default.
- W4384161803 hasConceptScore W4384161803C42219234 @default.
- W4384161803 hasConceptScore W4384161803C42360764 @default.
- W4384161803 hasConceptScore W4384161803C58471807 @default.
- W4384161803 hasConceptScore W4384161803C71924100 @default.
- W4384161803 hasFunder F4320319960 @default.
- W4384161803 hasFunder F4320319965 @default.
- W4384161803 hasFunder F4320334392 @default.
- W4384161803 hasFunder F4320337347 @default.
- W4384161803 hasIssue "7" @default.
- W4384161803 hasLocation W43841618031 @default.
- W4384161803 hasLocation W43841618032 @default.
- W4384161803 hasLocation W43841618033 @default.
- W4384161803 hasOpenAccess W4384161803 @default.
- W4384161803 hasPrimaryLocation W43841618031 @default.
- W4384161803 hasRelatedWork W1965384564 @default.
- W4384161803 hasRelatedWork W2002899258 @default.
- W4384161803 hasRelatedWork W2017945832 @default.
- W4384161803 hasRelatedWork W2050767892 @default.
- W4384161803 hasRelatedWork W2351356734 @default.
- W4384161803 hasRelatedWork W2359386000 @default.
- W4384161803 hasRelatedWork W2748952813 @default.
- W4384161803 hasRelatedWork W2899084033 @default.
- W4384161803 hasRelatedWork W4245078835 @default.
- W4384161803 hasRelatedWork W4386041857 @default.