Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384162010> ?p ?o ?g. }
- W4384162010 endingPage "12" @default.
- W4384162010 startingPage "1" @default.
- W4384162010 abstract "Deep learning has become a powerful tool to automatically classify medical hyperspectral images (MedHSIs) for the diagnosis of various tumors such as cancer. These deep learning based classification approaches consist of both feature extraction and disease prediction, which are independent of each other. Therefore, the extracted features may be incompatible with the used classifier for prediction. To remedy such deficiency, in this work, we propose a novel deep method, <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i.e</i> ., deep margin cosine autoencoder (DMCA), for the MedHSI classification, which provides solid support to diagnose tumors. To be specific, <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>first</i> , we consider deep autoencoder (DAE) network as the basic framework for the feature extraction of the MedHSI, and the soft-max classifier is introduced as the output layer to predict the results. <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Second</i> , to report the features well compatible with the classifier, the importance of the soft-max is added as a constraint into the DAE network. Further, a cosine margin is introduced to enhance the discrimination of different feature clusters. In addition, we also design an optimization scheme to the solutions of the DMCA model. <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Third</i> , a two-stage training strategy is presented to train the built DMCA network. After completing the training, unknown tissues ( <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i.e</i> ., unlabeled samples) can be specified to determine whether they are tumors or not. Sufficient experimental results have been provided to validate that our DMCA method achieves better classification performance and higher tumor diagnosis accuracy compared with some advanced approaches." @default.
- W4384162010 created "2023-07-14" @default.
- W4384162010 creator A5028055759 @default.
- W4384162010 creator A5038977917 @default.
- W4384162010 creator A5067418248 @default.
- W4384162010 creator A5077293908 @default.
- W4384162010 date "2023-01-01" @default.
- W4384162010 modified "2023-10-17" @default.
- W4384162010 title "Deep Margin Cosine Autoencoder Based Medical Hyperspectral Image Classification for Tumor Diagnosis" @default.
- W4384162010 cites W1521436688 @default.
- W4384162010 cites W1925122138 @default.
- W4384162010 cites W2001058351 @default.
- W4384162010 cites W2018257962 @default.
- W4384162010 cites W2029316659 @default.
- W4384162010 cites W2057781447 @default.
- W4384162010 cites W2087080155 @default.
- W4384162010 cites W2107003353 @default.
- W4384162010 cites W2116218347 @default.
- W4384162010 cites W2119681632 @default.
- W4384162010 cites W2136922672 @default.
- W4384162010 cites W2147222670 @default.
- W4384162010 cites W2150814170 @default.
- W4384162010 cites W2151665594 @default.
- W4384162010 cites W2168444508 @default.
- W4384162010 cites W2278837653 @default.
- W4384162010 cites W2327549720 @default.
- W4384162010 cites W2412322763 @default.
- W4384162010 cites W2475697472 @default.
- W4384162010 cites W2595902385 @default.
- W4384162010 cites W2603422184 @default.
- W4384162010 cites W2608819578 @default.
- W4384162010 cites W2619570473 @default.
- W4384162010 cites W2682360066 @default.
- W4384162010 cites W2777427437 @default.
- W4384162010 cites W2791006446 @default.
- W4384162010 cites W2793272303 @default.
- W4384162010 cites W2793848630 @default.
- W4384162010 cites W2804458818 @default.
- W4384162010 cites W2907632336 @default.
- W4384162010 cites W2909479956 @default.
- W4384162010 cites W2921862546 @default.
- W4384162010 cites W2944413439 @default.
- W4384162010 cites W2981108991 @default.
- W4384162010 cites W2990162903 @default.
- W4384162010 cites W2991469946 @default.
- W4384162010 cites W3012215621 @default.
- W4384162010 cites W3087334746 @default.
- W4384162010 cites W3119311349 @default.
- W4384162010 cites W3120077038 @default.
- W4384162010 cites W3134985592 @default.
- W4384162010 cites W3174526573 @default.
- W4384162010 cites W3194467953 @default.
- W4384162010 cites W3202024712 @default.
- W4384162010 cites W4283811313 @default.
- W4384162010 cites W4308657700 @default.
- W4384162010 cites W4312058481 @default.
- W4384162010 cites W4323519394 @default.
- W4384162010 doi "https://doi.org/10.1109/tim.2023.3293548" @default.
- W4384162010 hasPublicationYear "2023" @default.
- W4384162010 type Work @default.
- W4384162010 citedByCount "0" @default.
- W4384162010 crossrefType "journal-article" @default.
- W4384162010 hasAuthorship W4384162010A5028055759 @default.
- W4384162010 hasAuthorship W4384162010A5038977917 @default.
- W4384162010 hasAuthorship W4384162010A5067418248 @default.
- W4384162010 hasAuthorship W4384162010A5077293908 @default.
- W4384162010 hasConcept C101738243 @default.
- W4384162010 hasConcept C108583219 @default.
- W4384162010 hasConcept C119857082 @default.
- W4384162010 hasConcept C153180895 @default.
- W4384162010 hasConcept C154945302 @default.
- W4384162010 hasConcept C159078339 @default.
- W4384162010 hasConcept C41008148 @default.
- W4384162010 hasConcept C52622490 @default.
- W4384162010 hasConcept C774472 @default.
- W4384162010 hasConcept C95623464 @default.
- W4384162010 hasConceptScore W4384162010C101738243 @default.
- W4384162010 hasConceptScore W4384162010C108583219 @default.
- W4384162010 hasConceptScore W4384162010C119857082 @default.
- W4384162010 hasConceptScore W4384162010C153180895 @default.
- W4384162010 hasConceptScore W4384162010C154945302 @default.
- W4384162010 hasConceptScore W4384162010C159078339 @default.
- W4384162010 hasConceptScore W4384162010C41008148 @default.
- W4384162010 hasConceptScore W4384162010C52622490 @default.
- W4384162010 hasConceptScore W4384162010C774472 @default.
- W4384162010 hasConceptScore W4384162010C95623464 @default.
- W4384162010 hasFunder F4320321001 @default.
- W4384162010 hasFunder F4320321543 @default.
- W4384162010 hasLocation W43841620101 @default.
- W4384162010 hasOpenAccess W4384162010 @default.
- W4384162010 hasPrimaryLocation W43841620101 @default.
- W4384162010 hasRelatedWork W2766146978 @default.
- W4384162010 hasRelatedWork W2771515600 @default.
- W4384162010 hasRelatedWork W2772780115 @default.
- W4384162010 hasRelatedWork W2775464024 @default.
- W4384162010 hasRelatedWork W2776466379 @default.
- W4384162010 hasRelatedWork W2900180889 @default.
- W4384162010 hasRelatedWork W3206265116 @default.