Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384163203> ?p ?o ?g. }
- W4384163203 endingPage "527" @default.
- W4384163203 startingPage "512" @default.
- W4384163203 abstract "The leaf area index (LAI) retrieval methods based on traditional neural networks require a large number of training samples constructed from remote sensing data or simulation data using radiative transfer models. Furthermore, the training samples for the neural networks are sensor-specific. Therefore, the existing training samples for a sensor cannot be directly applied to estimate LAI values from remote sensing data acquired by another sensor. In addition, a large number of currently available LAI ground measurements (considered as “true values”) are not used to construct training datasets of the neural networks to further improve the accuracy of the retrieved LAI values. In this study, a method based on deep transfer learning is proposed to retrieve LAI values from the Visual Infrared Imaging Radiometer Suite (VIIRS) surface reflectance data based on the existing training dataset established from the Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance data and the fused LAI values of the MODIS and Carbon cYcle and Change in Land Observational Products from an Ensemble of Satellites (CYCLOPES) LAI products. A transferable model is constructed by using a deep belief network (DBN) composed of a restricted Boltzmann machine (RBM) and a back propagation (BP) network. The DBN is pretrained by the existing training dataset, and the hyperparameters of the DBN are determined by using a Bayesian optimization algorithm. Then, the RBM parameters of the pretrained DBN are frozen, and the BP parameters are fine-tuned by a small sample dataset composed of the LAI ground measurements and the corresponding VIIRS surface reflectance data. Finally, the VIIRS surface reflectance data are inputted into the fine-tuned DBN to estimate LAI values. The retrieved LAI values were cross-compared with the MODIS and VIIRS LAI products and were directly evaluated with LAI ground measurements at the Ground-Based Observations for Validation (GBOV) and Implementing Multi-Scale Agricultural Indicators Exploiting Sentinels (IMAGINES) sites. The results demonstrate that the retrieved LAI values at these sites with different vegetation types show reasonable seasonality and the spatial distributions of the retrieved LAI values are similar to those of the MODIS and VIIRS LAI products. The direct validation results show that the LAI values retrieved by the DBN with fine-tuned BP parameters (RMSE over the USA: 0.48, RMSE over Europe: 0.71) are obviously superior to the LAI values retrieved by the DBN without fine-tuned BP parameters (RMSE over the USA: 0.70, RMSE over Europe: 0.98). This study demonstrates that deep transfer learning can effectively retrieve LAI values from the VIIRS surface reflectance data with limited LAI ground measurement samples and the existing training dataset." @default.
- W4384163203 created "2023-07-14" @default.
- W4384163203 creator A5012578962 @default.
- W4384163203 creator A5057412029 @default.
- W4384163203 creator A5063976189 @default.
- W4384163203 creator A5074544873 @default.
- W4384163203 date "2023-08-01" @default.
- W4384163203 modified "2023-10-18" @default.
- W4384163203 title "A method to estimate leaf area index from VIIRS surface reflectance using deep transfer learning" @default.
- W4384163203 cites W1636213942 @default.
- W4384163203 cites W1978160572 @default.
- W4384163203 cites W1987139340 @default.
- W4384163203 cites W2022496670 @default.
- W4384163203 cites W2038137144 @default.
- W4384163203 cites W2043673805 @default.
- W4384163203 cites W2058214432 @default.
- W4384163203 cites W2094420085 @default.
- W4384163203 cites W2116292622 @default.
- W4384163203 cites W2124537004 @default.
- W4384163203 cites W2130837422 @default.
- W4384163203 cites W2151647593 @default.
- W4384163203 cites W2165698076 @default.
- W4384163203 cites W2192203593 @default.
- W4384163203 cites W221493477 @default.
- W4384163203 cites W2781743904 @default.
- W4384163203 cites W2789886710 @default.
- W4384163203 cites W2792344217 @default.
- W4384163203 cites W2794103799 @default.
- W4384163203 cites W2795121812 @default.
- W4384163203 cites W2884372010 @default.
- W4384163203 cites W2909041182 @default.
- W4384163203 cites W2955323124 @default.
- W4384163203 cites W3005739096 @default.
- W4384163203 cites W3037054039 @default.
- W4384163203 cites W3046896706 @default.
- W4384163203 cites W3081137328 @default.
- W4384163203 cites W3106064248 @default.
- W4384163203 cites W3135933075 @default.
- W4384163203 cites W3153113051 @default.
- W4384163203 cites W3193741668 @default.
- W4384163203 cites W3197400137 @default.
- W4384163203 cites W3205772352 @default.
- W4384163203 cites W3207963994 @default.
- W4384163203 cites W4223500037 @default.
- W4384163203 cites W4224037988 @default.
- W4384163203 cites W4281254516 @default.
- W4384163203 cites W4293031674 @default.
- W4384163203 cites W61452412 @default.
- W4384163203 doi "https://doi.org/10.1016/j.isprsjprs.2023.07.012" @default.
- W4384163203 hasPublicationYear "2023" @default.
- W4384163203 type Work @default.
- W4384163203 citedByCount "0" @default.
- W4384163203 crossrefType "journal-article" @default.
- W4384163203 hasAuthorship W4384163203A5012578962 @default.
- W4384163203 hasAuthorship W4384163203A5057412029 @default.
- W4384163203 hasAuthorship W4384163203A5063976189 @default.
- W4384163203 hasAuthorship W4384163203A5074544873 @default.
- W4384163203 hasConcept C105795698 @default.
- W4384163203 hasConcept C108583219 @default.
- W4384163203 hasConcept C108597893 @default.
- W4384163203 hasConcept C120189094 @default.
- W4384163203 hasConcept C120665830 @default.
- W4384163203 hasConcept C121332964 @default.
- W4384163203 hasConcept C127313418 @default.
- W4384163203 hasConcept C127413603 @default.
- W4384163203 hasConcept C130066347 @default.
- W4384163203 hasConcept C146978453 @default.
- W4384163203 hasConcept C154945302 @default.
- W4384163203 hasConcept C165838908 @default.
- W4384163203 hasConcept C18903297 @default.
- W4384163203 hasConcept C19269812 @default.
- W4384163203 hasConcept C199390426 @default.
- W4384163203 hasConcept C25989453 @default.
- W4384163203 hasConcept C2777007095 @default.
- W4384163203 hasConcept C2777701342 @default.
- W4384163203 hasConcept C33923547 @default.
- W4384163203 hasConcept C39432304 @default.
- W4384163203 hasConcept C41008148 @default.
- W4384163203 hasConcept C50644808 @default.
- W4384163203 hasConcept C62520636 @default.
- W4384163203 hasConcept C62649853 @default.
- W4384163203 hasConcept C74902906 @default.
- W4384163203 hasConcept C86803240 @default.
- W4384163203 hasConcept C97385483 @default.
- W4384163203 hasConceptScore W4384163203C105795698 @default.
- W4384163203 hasConceptScore W4384163203C108583219 @default.
- W4384163203 hasConceptScore W4384163203C108597893 @default.
- W4384163203 hasConceptScore W4384163203C120189094 @default.
- W4384163203 hasConceptScore W4384163203C120665830 @default.
- W4384163203 hasConceptScore W4384163203C121332964 @default.
- W4384163203 hasConceptScore W4384163203C127313418 @default.
- W4384163203 hasConceptScore W4384163203C127413603 @default.
- W4384163203 hasConceptScore W4384163203C130066347 @default.
- W4384163203 hasConceptScore W4384163203C146978453 @default.
- W4384163203 hasConceptScore W4384163203C154945302 @default.
- W4384163203 hasConceptScore W4384163203C165838908 @default.
- W4384163203 hasConceptScore W4384163203C18903297 @default.
- W4384163203 hasConceptScore W4384163203C19269812 @default.