Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384163501> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4384163501 endingPage "209" @default.
- W4384163501 startingPage "209" @default.
- W4384163501 abstract "It has been 25 years since Fire and Mello first reported that double-stranded RNAs trigger a gene silencing event via Watson-Crick base pairing with a complementary sequence in mRNAs.1Fire A. Xu S. Montgomery M.K. Kostas S.A. Driver S.E. Mello C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature. 1998; 391: 806-811https://doi.org/10.1038/35888Crossref PubMed Scopus (11970) Google Scholar Shortly thereafter, Elbashir et al. demonstrated that the triggering agents are 21 base pair duplexes, termed small interfering RNAs (siRNAs), in which one strand is complementary to the target mRNA while the other strand has the sequence as the target.2Elbashir S.M. Harborth J. Lendeckel W. Yalcin A. Weber K. Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.Nature. 2001; 411: 494-498https://doi.org/10.1038/35078107Crossref PubMed Scopus (8201) Google Scholar The mechanism of RNA interference is primarily a process by which endogenous RNA hairpin structures are processed into duplexes termed microRNAs.3Bartel D.P. MicroRNAs.Cell. 2004; 116: 281-297https://doi.org/10.1016/S0092-8674(04)00045-5Abstract Full Text Full Text PDF PubMed Scopus (30039) Google Scholar Before endonuclease processing, microRNAs are configured with a covalent loop joining the guide and passenger strands. In a recent issue of Molecular Therapy – Nucleic Acids, Shibata et al. report that chemical bridging of the two strands of siRNAs results in higher potency and reduces an undesired complication of siRNAs termed “off-target” effects.4Shibata A. Shirohzu H. Iwakami Y. Abe T. Emura C. Aoki E. Ohgi T. Terminal bridging of siRNA duplex at the ribose 2′ position controls strand bias and target sequence preference.Mol. Ther. Nucleic Acids. 2023; 32: 468-477https://doi.org/10.1016/j.omtn.2023.04.013Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar Off-target effects occur when the passenger strand guides untargeted cleavage of partially complementary sequences. This novel chemical bridging of the 5′ end of the passenger strand with the 3′ end of the guide strand via 2′ backbone chemistries effectively eliminates off-target effects.4Shibata A. Shirohzu H. Iwakami Y. Abe T. Emura C. Aoki E. Ohgi T. Terminal bridging of siRNA duplex at the ribose 2′ position controls strand bias and target sequence preference.Mol. Ther. Nucleic Acids. 2023; 32: 468-477https://doi.org/10.1016/j.omtn.2023.04.013Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar The net effects of this somewhat unusual configuration is an RNAi trigger with enhanced on-target efficacy and reduced off-target passenger strand activity. On-target and off-target effects were monitored by dual luciferase assays in which the RNAi activity of each strand is determined. Importantly, from a therapeutic perspective, this bridging enabled the investigators to inhibit a fusion oncogene message that has been difficult to target with conventional siRNAs. In contemplating why this strand crosslinking enhances RNAi function, one can best surmise that it engages Argonaute 2 more efficiently perhaps by forming a better fit into the Argonaute active site. However, this is only speculation that needs to be analyzed experimentally, perhaps using X-ray crystallographic analyses. It is important to independently confirm these results before we accept this approach as a new standard for siRNA design. Aside from the enhanced utility of the bridged siRNA strands, understanding why they function more optimally as siRNAs will enhance our understanding of the molecular events in RNA interference." @default.
- W4384163501 created "2023-07-14" @default.
- W4384163501 creator A5046038634 @default.
- W4384163501 date "2023-09-01" @default.
- W4384163501 modified "2023-10-14" @default.
- W4384163501 title "Bridging siRNA strands for better function" @default.
- W4384163501 cites W144423133 @default.
- W4384163501 cites W1611419331 @default.
- W4384163501 cites W1647075334 @default.
- W4384163501 cites W4366438797 @default.
- W4384163501 doi "https://doi.org/10.1016/j.omtn.2023.06.015" @default.
- W4384163501 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37520684" @default.
- W4384163501 hasPublicationYear "2023" @default.
- W4384163501 type Work @default.
- W4384163501 citedByCount "0" @default.
- W4384163501 crossrefType "journal-article" @default.
- W4384163501 hasAuthorship W4384163501A5046038634 @default.
- W4384163501 hasBestOaLocation W43841635011 @default.
- W4384163501 hasConcept C104317684 @default.
- W4384163501 hasConcept C119056186 @default.
- W4384163501 hasConcept C145059251 @default.
- W4384163501 hasConcept C153911025 @default.
- W4384163501 hasConcept C166703698 @default.
- W4384163501 hasConcept C185581394 @default.
- W4384163501 hasConcept C185592680 @default.
- W4384163501 hasConcept C190232843 @default.
- W4384163501 hasConcept C2191507 @default.
- W4384163501 hasConcept C22615655 @default.
- W4384163501 hasConcept C24107716 @default.
- W4384163501 hasConcept C512185932 @default.
- W4384163501 hasConcept C54355233 @default.
- W4384163501 hasConcept C552990157 @default.
- W4384163501 hasConcept C67705224 @default.
- W4384163501 hasConcept C70721500 @default.
- W4384163501 hasConcept C86803240 @default.
- W4384163501 hasConceptScore W4384163501C104317684 @default.
- W4384163501 hasConceptScore W4384163501C119056186 @default.
- W4384163501 hasConceptScore W4384163501C145059251 @default.
- W4384163501 hasConceptScore W4384163501C153911025 @default.
- W4384163501 hasConceptScore W4384163501C166703698 @default.
- W4384163501 hasConceptScore W4384163501C185581394 @default.
- W4384163501 hasConceptScore W4384163501C185592680 @default.
- W4384163501 hasConceptScore W4384163501C190232843 @default.
- W4384163501 hasConceptScore W4384163501C2191507 @default.
- W4384163501 hasConceptScore W4384163501C22615655 @default.
- W4384163501 hasConceptScore W4384163501C24107716 @default.
- W4384163501 hasConceptScore W4384163501C512185932 @default.
- W4384163501 hasConceptScore W4384163501C54355233 @default.
- W4384163501 hasConceptScore W4384163501C552990157 @default.
- W4384163501 hasConceptScore W4384163501C67705224 @default.
- W4384163501 hasConceptScore W4384163501C70721500 @default.
- W4384163501 hasConceptScore W4384163501C86803240 @default.
- W4384163501 hasLocation W43841635011 @default.
- W4384163501 hasLocation W43841635012 @default.
- W4384163501 hasLocation W43841635013 @default.
- W4384163501 hasOpenAccess W4384163501 @default.
- W4384163501 hasPrimaryLocation W43841635011 @default.
- W4384163501 hasRelatedWork W147652200 @default.
- W4384163501 hasRelatedWork W1981390890 @default.
- W4384163501 hasRelatedWork W2030652381 @default.
- W4384163501 hasRelatedWork W2083004731 @default.
- W4384163501 hasRelatedWork W2373539659 @default.
- W4384163501 hasRelatedWork W2409677235 @default.
- W4384163501 hasRelatedWork W2418360204 @default.
- W4384163501 hasRelatedWork W2487483780 @default.
- W4384163501 hasRelatedWork W2892436319 @default.
- W4384163501 hasRelatedWork W2168081547 @default.
- W4384163501 hasVolume "33" @default.
- W4384163501 isParatext "false" @default.
- W4384163501 isRetracted "false" @default.
- W4384163501 workType "article" @default.