Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384163695> ?p ?o ?g. }
- W4384163695 endingPage "108160" @default.
- W4384163695 startingPage "108160" @default.
- W4384163695 abstract "Lithium-ion battery (LIB) capacity degradation prediction plays an important role in the prediction of battery health degradation. Accurate prediction of its capacity can guide battery replacement and maintenance, and ensure the safety and stability of the energy storage system. In this paper, a hybrid method based on artificial bee colony (ABC) algorithm and multi-kernel support vector regression (MK-SVR) is proposed to predict the capacity degradation of LIB. Firstly, the capacity degradation prediction model of LIB is established by MK-SVR with few hyperparameters. Then, the hyperparameters of degradation prediction model are optimized by the ABC to improve the accuracy of prediction. Finally, the proposed method is verified by NASA's LIB degradation experiment. Compared with different optimization algorithms, ABC greatly improves the accuracy of capacity degradation prediction. Compared with traditional forecasting methods, the proposed method can predict the capacity degradation of LIB more accurately." @default.
- W4384163695 created "2023-07-14" @default.
- W4384163695 creator A5005065311 @default.
- W4384163695 creator A5006693672 @default.
- W4384163695 creator A5041737286 @default.
- W4384163695 creator A5057055806 @default.
- W4384163695 creator A5068760974 @default.
- W4384163695 creator A5080094180 @default.
- W4384163695 date "2023-11-01" @default.
- W4384163695 modified "2023-10-04" @default.
- W4384163695 title "Capacity degradation prediction of lithium-ion battery based on artificial bee colony and multi-kernel support vector regression" @default.
- W4384163695 cites W1964357740 @default.
- W4384163695 cites W2054878923 @default.
- W4384163695 cites W2078279667 @default.
- W4384163695 cites W2089340434 @default.
- W4384163695 cites W2597586889 @default.
- W4384163695 cites W2781930323 @default.
- W4384163695 cites W2789625876 @default.
- W4384163695 cites W2796854462 @default.
- W4384163695 cites W2797078627 @default.
- W4384163695 cites W2901900441 @default.
- W4384163695 cites W2904504253 @default.
- W4384163695 cites W2920916790 @default.
- W4384163695 cites W2974625411 @default.
- W4384163695 cites W2981766335 @default.
- W4384163695 cites W2991617016 @default.
- W4384163695 cites W3047827241 @default.
- W4384163695 cites W3110630544 @default.
- W4384163695 cites W3154061193 @default.
- W4384163695 cites W4200187155 @default.
- W4384163695 cites W4212889492 @default.
- W4384163695 cites W4220872940 @default.
- W4384163695 cites W4234393104 @default.
- W4384163695 cites W4239510810 @default.
- W4384163695 cites W4280554068 @default.
- W4384163695 cites W4280596788 @default.
- W4384163695 cites W4281257578 @default.
- W4384163695 cites W4281394975 @default.
- W4384163695 cites W4281570656 @default.
- W4384163695 cites W4281674107 @default.
- W4384163695 cites W4281700440 @default.
- W4384163695 cites W4281723587 @default.
- W4384163695 cites W4288901773 @default.
- W4384163695 cites W4296337562 @default.
- W4384163695 doi "https://doi.org/10.1016/j.est.2023.108160" @default.
- W4384163695 hasPublicationYear "2023" @default.
- W4384163695 type Work @default.
- W4384163695 citedByCount "0" @default.
- W4384163695 crossrefType "journal-article" @default.
- W4384163695 hasAuthorship W4384163695A5005065311 @default.
- W4384163695 hasAuthorship W4384163695A5006693672 @default.
- W4384163695 hasAuthorship W4384163695A5041737286 @default.
- W4384163695 hasAuthorship W4384163695A5057055806 @default.
- W4384163695 hasAuthorship W4384163695A5068760974 @default.
- W4384163695 hasAuthorship W4384163695A5080094180 @default.
- W4384163695 hasConcept C114614502 @default.
- W4384163695 hasConcept C119857082 @default.
- W4384163695 hasConcept C121332964 @default.
- W4384163695 hasConcept C12267149 @default.
- W4384163695 hasConcept C154945302 @default.
- W4384163695 hasConcept C163258240 @default.
- W4384163695 hasConcept C2779679103 @default.
- W4384163695 hasConcept C2989104859 @default.
- W4384163695 hasConcept C33923547 @default.
- W4384163695 hasConcept C41008148 @default.
- W4384163695 hasConcept C555008776 @default.
- W4384163695 hasConcept C62520636 @default.
- W4384163695 hasConcept C74193536 @default.
- W4384163695 hasConcept C76155785 @default.
- W4384163695 hasConcept C8642999 @default.
- W4384163695 hasConcept C97133563 @default.
- W4384163695 hasConceptScore W4384163695C114614502 @default.
- W4384163695 hasConceptScore W4384163695C119857082 @default.
- W4384163695 hasConceptScore W4384163695C121332964 @default.
- W4384163695 hasConceptScore W4384163695C12267149 @default.
- W4384163695 hasConceptScore W4384163695C154945302 @default.
- W4384163695 hasConceptScore W4384163695C163258240 @default.
- W4384163695 hasConceptScore W4384163695C2779679103 @default.
- W4384163695 hasConceptScore W4384163695C2989104859 @default.
- W4384163695 hasConceptScore W4384163695C33923547 @default.
- W4384163695 hasConceptScore W4384163695C41008148 @default.
- W4384163695 hasConceptScore W4384163695C555008776 @default.
- W4384163695 hasConceptScore W4384163695C62520636 @default.
- W4384163695 hasConceptScore W4384163695C74193536 @default.
- W4384163695 hasConceptScore W4384163695C76155785 @default.
- W4384163695 hasConceptScore W4384163695C8642999 @default.
- W4384163695 hasConceptScore W4384163695C97133563 @default.
- W4384163695 hasLocation W43841636951 @default.
- W4384163695 hasOpenAccess W4384163695 @default.
- W4384163695 hasPrimaryLocation W43841636951 @default.
- W4384163695 hasRelatedWork W1996541855 @default.
- W4384163695 hasRelatedWork W3013125858 @default.
- W4384163695 hasRelatedWork W3195168932 @default.
- W4384163695 hasRelatedWork W3199608561 @default.
- W4384163695 hasRelatedWork W4210794429 @default.
- W4384163695 hasRelatedWork W4223456145 @default.
- W4384163695 hasRelatedWork W4283697347 @default.
- W4384163695 hasRelatedWork W4295309597 @default.