Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384164019> ?p ?o ?g. }
- W4384164019 endingPage "105250" @default.
- W4384164019 startingPage "105250" @default.
- W4384164019 abstract "In Computer vision for microscopy image analysis applications, object segmentation, classification, and structure localization are essential processes for many biological researchers across the globe. The proposed method is significant as it provides automated cancer diagnosis. The manual interpretation of microscopic biopsy for cancer diagnosis is subjective, time-consuming, and dependent on pathologists’ interpretations, degree of skill. An automated cancer diagnosis is required to address these constraints. In this work, A deep learning-based architecture, namely enhanced EMD convolution neural networks (EECNNs) for object segmentation is proposed for microscopy images. The multiple IMFs give detailed frequency components of an image for feature extraction. This improves the performance significantly as compared to the previous works of feature extraction. The presented network is utilized for the segmentation of nuclei and cells in microscopy. The network uses multi-resolution deconvolution filters to train at several levels of an input image, it links the intervening layers for improved localization and context and provides the outcome. The additional convolution layers, which skip the max-pooling function, allow the network to train for varying input intensities and object dimensions while making it adaptable to noisy data. Here, we have compared the experimental results of the proposed method on widely accessible data sets which demonstrate that the proposed method provides superior results in terms of Accuracy of 0.9445, Specificity of 0.9256, Sensitivity of 0.9245, MCC of 0.9654, and BCR of 0.9250." @default.
- W4384164019 created "2023-07-14" @default.
- W4384164019 creator A5005512347 @default.
- W4384164019 creator A5026675739 @default.
- W4384164019 creator A5033777421 @default.
- W4384164019 creator A5078039916 @default.
- W4384164019 date "2023-09-01" @default.
- W4384164019 modified "2023-10-16" @default.
- W4384164019 title "Segmentation of gastric cancer from microscopic biopsy images using deep learning approach" @default.
- W4384164019 cites W1968615915 @default.
- W4384164019 cites W1975103383 @default.
- W4384164019 cites W1979884242 @default.
- W4384164019 cites W2033994961 @default.
- W4384164019 cites W2069330528 @default.
- W4384164019 cites W2080363053 @default.
- W4384164019 cites W2080457512 @default.
- W4384164019 cites W2129112648 @default.
- W4384164019 cites W2142476243 @default.
- W4384164019 cites W2163352848 @default.
- W4384164019 cites W2170095278 @default.
- W4384164019 cites W2315817934 @default.
- W4384164019 cites W2526499595 @default.
- W4384164019 cites W2624661262 @default.
- W4384164019 cites W2963150697 @default.
- W4384164019 cites W2963849369 @default.
- W4384164019 cites W3117707016 @default.
- W4384164019 cites W3139326342 @default.
- W4384164019 cites W3172220288 @default.
- W4384164019 cites W3175644580 @default.
- W4384164019 cites W4220788253 @default.
- W4384164019 cites W4312222252 @default.
- W4384164019 cites W4313484972 @default.
- W4384164019 cites W4320922048 @default.
- W4384164019 cites W4366983311 @default.
- W4384164019 doi "https://doi.org/10.1016/j.bspc.2023.105250" @default.
- W4384164019 hasPublicationYear "2023" @default.
- W4384164019 type Work @default.
- W4384164019 citedByCount "0" @default.
- W4384164019 crossrefType "journal-article" @default.
- W4384164019 hasAuthorship W4384164019A5005512347 @default.
- W4384164019 hasAuthorship W4384164019A5026675739 @default.
- W4384164019 hasAuthorship W4384164019A5033777421 @default.
- W4384164019 hasAuthorship W4384164019A5078039916 @default.
- W4384164019 hasConcept C108583219 @default.
- W4384164019 hasConcept C11413529 @default.
- W4384164019 hasConcept C138885662 @default.
- W4384164019 hasConcept C151730666 @default.
- W4384164019 hasConcept C153180895 @default.
- W4384164019 hasConcept C154945302 @default.
- W4384164019 hasConcept C174576160 @default.
- W4384164019 hasConcept C2776401178 @default.
- W4384164019 hasConcept C2779343474 @default.
- W4384164019 hasConcept C2781238097 @default.
- W4384164019 hasConcept C31972630 @default.
- W4384164019 hasConcept C41008148 @default.
- W4384164019 hasConcept C41895202 @default.
- W4384164019 hasConcept C45347329 @default.
- W4384164019 hasConcept C50644808 @default.
- W4384164019 hasConcept C52622490 @default.
- W4384164019 hasConcept C70437156 @default.
- W4384164019 hasConcept C81363708 @default.
- W4384164019 hasConcept C86803240 @default.
- W4384164019 hasConcept C89600930 @default.
- W4384164019 hasConceptScore W4384164019C108583219 @default.
- W4384164019 hasConceptScore W4384164019C11413529 @default.
- W4384164019 hasConceptScore W4384164019C138885662 @default.
- W4384164019 hasConceptScore W4384164019C151730666 @default.
- W4384164019 hasConceptScore W4384164019C153180895 @default.
- W4384164019 hasConceptScore W4384164019C154945302 @default.
- W4384164019 hasConceptScore W4384164019C174576160 @default.
- W4384164019 hasConceptScore W4384164019C2776401178 @default.
- W4384164019 hasConceptScore W4384164019C2779343474 @default.
- W4384164019 hasConceptScore W4384164019C2781238097 @default.
- W4384164019 hasConceptScore W4384164019C31972630 @default.
- W4384164019 hasConceptScore W4384164019C41008148 @default.
- W4384164019 hasConceptScore W4384164019C41895202 @default.
- W4384164019 hasConceptScore W4384164019C45347329 @default.
- W4384164019 hasConceptScore W4384164019C50644808 @default.
- W4384164019 hasConceptScore W4384164019C52622490 @default.
- W4384164019 hasConceptScore W4384164019C70437156 @default.
- W4384164019 hasConceptScore W4384164019C81363708 @default.
- W4384164019 hasConceptScore W4384164019C86803240 @default.
- W4384164019 hasConceptScore W4384164019C89600930 @default.
- W4384164019 hasLocation W43841640191 @default.
- W4384164019 hasOpenAccess W4384164019 @default.
- W4384164019 hasPrimaryLocation W43841640191 @default.
- W4384164019 hasRelatedWork W2019566805 @default.
- W4384164019 hasRelatedWork W2279398222 @default.
- W4384164019 hasRelatedWork W2295021132 @default.
- W4384164019 hasRelatedWork W2517027266 @default.
- W4384164019 hasRelatedWork W2546942002 @default.
- W4384164019 hasRelatedWork W3156786002 @default.
- W4384164019 hasRelatedWork W4299822940 @default.
- W4384164019 hasRelatedWork W4312417841 @default.
- W4384164019 hasRelatedWork W4366492315 @default.
- W4384164019 hasRelatedWork W1967061043 @default.
- W4384164019 hasVolume "86" @default.
- W4384164019 isParatext "false" @default.