Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384199956> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4384199956 abstract "In numerous real-world applications, transverse vibrations of beams are nonlinear in nature. It is a task to solve nonlinear beam systems due to their substantial dependence on the 4 variables of the system and the boundary conditions. To comprehend the nonlinear vibration characteristics, it is essential to do a precise parametric analysis. This research demonstrates an approximation solution for odd and even nonlinear transverse vibrating beams using the Laplace-based variation iteration method, and the formulation of the beams depends on the Galerkin approximation. For the solution of the nonlinear differential equation, this method is efficient as compared to the existing methods in the literature because the solutions exactly match with the numerical solutions. The Laplace-based variation iteration method has been used for the first time to obtain the solution to this important problem. To demonstrate the applicability and precision of the Laplace-based iteration method, several initial conditions are applied to the governing equation for nonlinearly vibrating transverse beams. The natural frequencies and periodic response curves are computed using Laplace-based VIM and compared with the Runge–Kutta RK4 method. In contrast to the RK4, the results demonstrate that the proposed method yields excellent consensus. The Lagrange multiplier is widely regarded as one of the most essential concepts in variational theory. The result obtained are displayed in the table form. Highlights The highlights of the solution of the Euler–Bernoulli beam equation with quintic nonlinearity using Lagrange multiplier are: 1. Introducing the constraint of the boundary conditions into the equation using Lagrange multipliers. 2. Formulating the equations for the Lagrange multipliers and the deflection of the beam. 3. Solving the resulting system of algebraic equations using numerical methods. 4. Obtaining the deflection of the beam as a function of its length and the applied load. 5. Analyzing the behavior of the beam under different loads and boundary conditions." @default.
- W4384199956 created "2023-07-14" @default.
- W4384199956 creator A5037867307 @default.
- W4384199956 creator A5038369224 @default.
- W4384199956 creator A5038763982 @default.
- W4384199956 creator A5061983872 @default.
- W4384199956 creator A5071973429 @default.
- W4384199956 creator A5078600332 @default.
- W4384199956 date "2023-07-12" @default.
- W4384199956 modified "2023-09-30" @default.
- W4384199956 title "Exact solutions of Euler–Bernoulli beams" @default.
- W4384199956 doi "https://doi.org/10.1142/s0217984923501610" @default.
- W4384199956 hasPublicationYear "2023" @default.
- W4384199956 type Work @default.
- W4384199956 citedByCount "1" @default.
- W4384199956 countsByYear W43841999562023 @default.
- W4384199956 crossrefType "journal-article" @default.
- W4384199956 hasAuthorship W4384199956A5037867307 @default.
- W4384199956 hasAuthorship W4384199956A5038369224 @default.
- W4384199956 hasAuthorship W4384199956A5038763982 @default.
- W4384199956 hasAuthorship W4384199956A5061983872 @default.
- W4384199956 hasAuthorship W4384199956A5071973429 @default.
- W4384199956 hasAuthorship W4384199956A5078600332 @default.
- W4384199956 hasConcept C121332964 @default.
- W4384199956 hasConcept C126255220 @default.
- W4384199956 hasConcept C134306372 @default.
- W4384199956 hasConcept C158622935 @default.
- W4384199956 hasConcept C182310444 @default.
- W4384199956 hasConcept C186899397 @default.
- W4384199956 hasConcept C28826006 @default.
- W4384199956 hasConcept C33923547 @default.
- W4384199956 hasConcept C62520636 @default.
- W4384199956 hasConcept C70615421 @default.
- W4384199956 hasConcept C73684929 @default.
- W4384199956 hasConcept C97937538 @default.
- W4384199956 hasConceptScore W4384199956C121332964 @default.
- W4384199956 hasConceptScore W4384199956C126255220 @default.
- W4384199956 hasConceptScore W4384199956C134306372 @default.
- W4384199956 hasConceptScore W4384199956C158622935 @default.
- W4384199956 hasConceptScore W4384199956C182310444 @default.
- W4384199956 hasConceptScore W4384199956C186899397 @default.
- W4384199956 hasConceptScore W4384199956C28826006 @default.
- W4384199956 hasConceptScore W4384199956C33923547 @default.
- W4384199956 hasConceptScore W4384199956C62520636 @default.
- W4384199956 hasConceptScore W4384199956C70615421 @default.
- W4384199956 hasConceptScore W4384199956C73684929 @default.
- W4384199956 hasConceptScore W4384199956C97937538 @default.
- W4384199956 hasFunder F4320321001 @default.
- W4384199956 hasLocation W43841999561 @default.
- W4384199956 hasOpenAccess W4384199956 @default.
- W4384199956 hasPrimaryLocation W43841999561 @default.
- W4384199956 hasRelatedWork W1969015635 @default.
- W4384199956 hasRelatedWork W1977653808 @default.
- W4384199956 hasRelatedWork W1986323742 @default.
- W4384199956 hasRelatedWork W2069785443 @default.
- W4384199956 hasRelatedWork W220460885 @default.
- W4384199956 hasRelatedWork W2362424236 @default.
- W4384199956 hasRelatedWork W2888350977 @default.
- W4384199956 hasRelatedWork W4287643753 @default.
- W4384199956 hasRelatedWork W4385248955 @default.
- W4384199956 hasRelatedWork W2186403845 @default.
- W4384199956 isParatext "false" @default.
- W4384199956 isRetracted "false" @default.
- W4384199956 workType "article" @default.