Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384200475> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4384200475 abstract "Abstract In this article, we study stochastic homogenization of non-homogeneous Gaussian free fields $$Xi ^{g,textbf{a}} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msup> <mml:mi>Ξ</mml:mi> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>,</mml:mo> <mml:mi>a</mml:mi> </mml:mrow> </mml:msup> </mml:math> and bi-Laplacian fields $$Xi ^{b,textbf{a}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msup> <mml:mi>Ξ</mml:mi> <mml:mrow> <mml:mi>b</mml:mi> <mml:mo>,</mml:mo> <mml:mi>a</mml:mi> </mml:mrow> </mml:msup> </mml:math> . They can be characterized as follows: for $$f=delta $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:mi>δ</mml:mi> </mml:mrow> </mml:math> the solution u of $$nabla cdot textbf{a} nabla u =f$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>∇</mml:mi> <mml:mo>·</mml:mo> <mml:mi>a</mml:mi> <mml:mi>∇</mml:mi> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> </mml:mrow> </mml:math> , $$textbf{a}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>a</mml:mi> </mml:math> is a uniformly elliptic random environment, is the covariance of $$Xi ^{g,textbf{a}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msup> <mml:mi>Ξ</mml:mi> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>,</mml:mo> <mml:mi>a</mml:mi> </mml:mrow> </mml:msup> </mml:math> . When f is the white noise, the field $$Xi ^{b,textbf{a}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msup> <mml:mi>Ξ</mml:mi> <mml:mrow> <mml:mi>b</mml:mi> <mml:mo>,</mml:mo> <mml:mi>a</mml:mi> </mml:mrow> </mml:msup> </mml:math> can be viewed as the distributional solution of the same elliptic equation. Our results characterize the scaling limit of such fields on both, a sufficiently regular domain $$Dsubset mathbb {R}^d$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>D</mml:mi> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> </mml:math> , or on the discrete torus. Based on stochastic homogenization techniques applied to the eigenfunction basis of the Laplace operator $$Delta $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>Δ</mml:mi> </mml:math> , we will show that such families of fields converge to an appropriate multiple of the GFF resp. bi-Laplacian. The limiting fields are determined by their respective homogenized operator $${{,mathrm{bar{textbf{a}}},}}Delta $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mrow> <mml:mspace /> <mml:mover> <mml:mrow> <mml:mi>a</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>¯</mml:mo> </mml:mrow> </mml:mover> <mml:mspace /> </mml:mrow> <mml:mi>Δ</mml:mi> </mml:mrow> </mml:math> , with constant $${{,mathrm{bar{textbf{a}}},}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mspace /> <mml:mover> <mml:mrow> <mml:mi>a</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>¯</mml:mo> </mml:mrow> </mml:mover> <mml:mspace /> </mml:mrow> </mml:math> depending on the law of the environment $$textbf{a}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>a</mml:mi> </mml:math> . The proofs are based on the results found in Armstrong et al. (in: Grundlehren der mathematischen Wissenschaften, Springer International Publishing, Cham, 2019) and Gloria et al. (ESAIM Math Model Numer Anal 48(2):325-346, 2014)." @default.
- W4384200475 created "2023-07-14" @default.
- W4384200475 creator A5027737124 @default.
- W4384200475 creator A5049175959 @default.
- W4384200475 date "2023-07-13" @default.
- W4384200475 modified "2023-10-08" @default.
- W4384200475 title "Stochastic Homogenization of Gaussian Fields on Random Media" @default.
- W4384200475 cites W1533252206 @default.
- W4384200475 cites W1802288072 @default.
- W4384200475 cites W184715792 @default.
- W4384200475 cites W2011095781 @default.
- W4384200475 cites W2049142284 @default.
- W4384200475 cites W2053695265 @default.
- W4384200475 cites W2056121942 @default.
- W4384200475 cites W2081210755 @default.
- W4384200475 cites W2089290407 @default.
- W4384200475 cites W2338937178 @default.
- W4384200475 cites W2492198317 @default.
- W4384200475 cites W2616184872 @default.
- W4384200475 cites W2963078535 @default.
- W4384200475 cites W2963184305 @default.
- W4384200475 cites W2963458061 @default.
- W4384200475 cites W2964103479 @default.
- W4384200475 cites W2964203384 @default.
- W4384200475 cites W3098261839 @default.
- W4384200475 cites W3105352918 @default.
- W4384200475 cites W3173680814 @default.
- W4384200475 cites W6071295 @default.
- W4384200475 cites W85130231 @default.
- W4384200475 doi "https://doi.org/10.1007/s00023-023-01347-5" @default.
- W4384200475 hasPublicationYear "2023" @default.
- W4384200475 type Work @default.
- W4384200475 citedByCount "0" @default.
- W4384200475 crossrefType "journal-article" @default.
- W4384200475 hasAuthorship W4384200475A5027737124 @default.
- W4384200475 hasAuthorship W4384200475A5049175959 @default.
- W4384200475 hasBestOaLocation W43842004751 @default.
- W4384200475 hasConcept C11413529 @default.
- W4384200475 hasConcept C154945302 @default.
- W4384200475 hasConcept C41008148 @default.
- W4384200475 hasConceptScore W4384200475C11413529 @default.
- W4384200475 hasConceptScore W4384200475C154945302 @default.
- W4384200475 hasConceptScore W4384200475C41008148 @default.
- W4384200475 hasLocation W43842004751 @default.
- W4384200475 hasOpenAccess W4384200475 @default.
- W4384200475 hasPrimaryLocation W43842004751 @default.
- W4384200475 hasRelatedWork W2051487156 @default.
- W4384200475 hasRelatedWork W2052122378 @default.
- W4384200475 hasRelatedWork W2053286651 @default.
- W4384200475 hasRelatedWork W2073681303 @default.
- W4384200475 hasRelatedWork W2317200988 @default.
- W4384200475 hasRelatedWork W2544423928 @default.
- W4384200475 hasRelatedWork W4225307033 @default.
- W4384200475 hasRelatedWork W2181413294 @default.
- W4384200475 hasRelatedWork W2181743346 @default.
- W4384200475 hasRelatedWork W2187401768 @default.
- W4384200475 isParatext "false" @default.
- W4384200475 isRetracted "false" @default.
- W4384200475 workType "article" @default.