Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384200768> ?p ?o ?g. }
- W4384200768 endingPage "12" @default.
- W4384200768 startingPage "1" @default.
- W4384200768 abstract "We use experimental and simulation data to recalibrate the standard Spalart–Allmaras model. Free-shear flow, the buffer layer, the log layer, and flows with adverse pressure gradients are targeted. In this process, the recalibration does not affect untargeted flows. Our approach uses Bayesian optimization and feedforward neural networks. The recalibrated model is implemented in two codes and tested in 11 flows: the majority of which are outside the training dataset and have geometries that are distinctly different from those in the training dataset. We show that the data-enabled recalibration offers improvements while preserving the model’s existing good behavior. In particular, our recalibration improves the model’s behavior in separated flows while preserving its existing good behaviors in flat-plate boundary-layer flows and channel flows. Further analysis indicates that the improvements in separated flow are mainly due to the recalibrated [Formula: see text] function and the resulting, more precise representation of the “slingshot” effect." @default.
- W4384200768 created "2023-07-14" @default.
- W4384200768 creator A5023754519 @default.
- W4384200768 creator A5079719314 @default.
- W4384200768 creator A5085025441 @default.
- W4384200768 date "2023-07-13" @default.
- W4384200768 modified "2023-10-12" @default.
- W4384200768 title "Data-Enabled Recalibration of the Spalart–Allmaras Model" @default.
- W4384200768 cites W188812337 @default.
- W4384200768 cites W1974455159 @default.
- W4384200768 cites W2002016471 @default.
- W4384200768 cites W2014544553 @default.
- W4384200768 cites W2042484084 @default.
- W4384200768 cites W2043876541 @default.
- W4384200768 cites W2049666243 @default.
- W4384200768 cites W2049839207 @default.
- W4384200768 cites W2052142712 @default.
- W4384200768 cites W2059954760 @default.
- W4384200768 cites W2065436455 @default.
- W4384200768 cites W2068692478 @default.
- W4384200768 cites W2071470374 @default.
- W4384200768 cites W2095046879 @default.
- W4384200768 cites W2102083746 @default.
- W4384200768 cites W2110053869 @default.
- W4384200768 cites W2110418811 @default.
- W4384200768 cites W2111003228 @default.
- W4384200768 cites W2121125723 @default.
- W4384200768 cites W2319329301 @default.
- W4384200768 cites W2322267167 @default.
- W4384200768 cites W2326358127 @default.
- W4384200768 cites W2329706877 @default.
- W4384200768 cites W2333697783 @default.
- W4384200768 cites W2335524910 @default.
- W4384200768 cites W2344479506 @default.
- W4384200768 cites W2345737627 @default.
- W4384200768 cites W2490045648 @default.
- W4384200768 cites W2534240011 @default.
- W4384200768 cites W2619115145 @default.
- W4384200768 cites W2770284151 @default.
- W4384200768 cites W2795982117 @default.
- W4384200768 cites W2802768264 @default.
- W4384200768 cites W2810249645 @default.
- W4384200768 cites W2811020507 @default.
- W4384200768 cites W2920959147 @default.
- W4384200768 cites W2945841072 @default.
- W4384200768 cites W2962757926 @default.
- W4384200768 cites W2981080108 @default.
- W4384200768 cites W2995408993 @default.
- W4384200768 cites W3013108861 @default.
- W4384200768 cites W3016989357 @default.
- W4384200768 cites W3101784309 @default.
- W4384200768 cites W3102140816 @default.
- W4384200768 cites W3119990632 @default.
- W4384200768 cites W3124389259 @default.
- W4384200768 cites W3134209574 @default.
- W4384200768 cites W3135859784 @default.
- W4384200768 cites W3162533428 @default.
- W4384200768 cites W3163453057 @default.
- W4384200768 cites W3172056809 @default.
- W4384200768 cites W3197578622 @default.
- W4384200768 cites W3202040969 @default.
- W4384200768 cites W3217139884 @default.
- W4384200768 cites W323536346 @default.
- W4384200768 cites W4205229608 @default.
- W4384200768 cites W4220758675 @default.
- W4384200768 cites W4225413887 @default.
- W4384200768 cites W4238160257 @default.
- W4384200768 cites W4289731438 @default.
- W4384200768 cites W4307290885 @default.
- W4384200768 cites W4320169488 @default.
- W4384200768 cites W4322492890 @default.
- W4384200768 cites W4379801332 @default.
- W4384200768 cites W748861584 @default.
- W4384200768 doi "https://doi.org/10.2514/1.j062870" @default.
- W4384200768 hasPublicationYear "2023" @default.
- W4384200768 type Work @default.
- W4384200768 citedByCount "0" @default.
- W4384200768 crossrefType "journal-article" @default.
- W4384200768 hasAuthorship W4384200768A5023754519 @default.
- W4384200768 hasAuthorship W4384200768A5079719314 @default.
- W4384200768 hasAuthorship W4384200768A5085025441 @default.
- W4384200768 hasConcept C111603439 @default.
- W4384200768 hasConcept C121332964 @default.
- W4384200768 hasConcept C127413603 @default.
- W4384200768 hasConcept C133731056 @default.
- W4384200768 hasConcept C134306372 @default.
- W4384200768 hasConcept C153294291 @default.
- W4384200768 hasConcept C154945302 @default.
- W4384200768 hasConcept C17744445 @default.
- W4384200768 hasConcept C199539241 @default.
- W4384200768 hasConcept C2776359362 @default.
- W4384200768 hasConcept C33923547 @default.
- W4384200768 hasConcept C38349280 @default.
- W4384200768 hasConcept C38858127 @default.
- W4384200768 hasConcept C41008148 @default.
- W4384200768 hasConcept C44154836 @default.
- W4384200768 hasConcept C50644808 @default.
- W4384200768 hasConcept C57879066 @default.