Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384200775> ?p ?o ?g. }
- W4384200775 endingPage "2828" @default.
- W4384200775 startingPage "2811" @default.
- W4384200775 abstract "Abstract. Glacier mass balance is typically estimated using a range of in situ measurements, remote sensing measurements, and physical and temperature index modelling techniques. With improved data collection and access to large datasets, data-driven techniques have recently gained prominence in modelling natural processes. The most common data-driven techniques used today are linear regression models and, to some extent, non-linear machine learning models such as artificial neural networks. However, the entire host of capabilities of machine learning modelling has not been applied to glacier mass balance modelling. This study used monthly meteorological data from ERA5-Land to drive four machine learning models: random forest (ensemble tree type), gradient-boosted regressor (ensemble tree type), support vector machine (kernel type), and artificial neural networks (neural type). We also use ordinary least squares linear regression as a baseline model against which to compare the performance of the machine learning models. Further, we assess the requirement of data for each of the models and the requirement for hyperparameter tuning. Finally, the importance of each meteorological variable in the mass balance estimation for each of the models is estimated using permutation importance. All machine learning models outperform the linear regression model. The neural network model depicted a low bias, suggesting the possibility of enhanced results in the event of biased input data. However, the ensemble tree-based models, random forest and gradient-boosted regressor, outperformed all other models in terms of the evaluation metrics and interpretability of the meteorological variables. The gradient-boosted regression model depicted the best coefficient of determination value of 0.713 and a root mean squared error of 1.071 m w.e. The feature importance values associated with all machine learning models suggested a high importance of meteorological variables associated with ablation. This is in line with predominantly negative mass balance observations. We conclude that machine learning techniques are promising in estimating glacier mass balance and can incorporate information from more significant meteorological variables as opposed to a simplified set of variables used in temperature index models." @default.
- W4384200775 created "2023-07-14" @default.
- W4384200775 creator A5000655078 @default.
- W4384200775 creator A5050464239 @default.
- W4384200775 creator A5051062235 @default.
- W4384200775 creator A5054914661 @default.
- W4384200775 date "2023-07-13" @default.
- W4384200775 modified "2023-10-17" @default.
- W4384200775 title "Modelling point mass balance for the glaciers of the Central European Alps using machine learning techniques" @default.
- W4384200775 cites W1585628654 @default.
- W4384200775 cites W1605688901 @default.
- W4384200775 cites W163939222 @default.
- W4384200775 cites W1678356000 @default.
- W4384200775 cites W1980844750 @default.
- W4384200775 cites W1988115241 @default.
- W4384200775 cites W1995341919 @default.
- W4384200775 cites W2001833158 @default.
- W4384200775 cites W2001991385 @default.
- W4384200775 cites W2048573669 @default.
- W4384200775 cites W2051460356 @default.
- W4384200775 cites W2056985021 @default.
- W4384200775 cites W2062603134 @default.
- W4384200775 cites W2063400028 @default.
- W4384200775 cites W2088794999 @default.
- W4384200775 cites W2100817496 @default.
- W4384200775 cites W2102636708 @default.
- W4384200775 cites W2105532180 @default.
- W4384200775 cites W2118791346 @default.
- W4384200775 cites W2121694455 @default.
- W4384200775 cites W2142192031 @default.
- W4384200775 cites W2288768024 @default.
- W4384200775 cites W2300299262 @default.
- W4384200775 cites W2327158536 @default.
- W4384200775 cites W2342542598 @default.
- W4384200775 cites W2474071056 @default.
- W4384200775 cites W250885230 @default.
- W4384200775 cites W2529168513 @default.
- W4384200775 cites W2560136348 @default.
- W4384200775 cites W2763635700 @default.
- W4384200775 cites W2775070522 @default.
- W4384200775 cites W2782835274 @default.
- W4384200775 cites W2785530160 @default.
- W4384200775 cites W2786865944 @default.
- W4384200775 cites W2889770595 @default.
- W4384200775 cites W2889780520 @default.
- W4384200775 cites W2893218638 @default.
- W4384200775 cites W2911964244 @default.
- W4384200775 cites W2914411150 @default.
- W4384200775 cites W2919190051 @default.
- W4384200775 cites W2965136591 @default.
- W4384200775 cites W2974527409 @default.
- W4384200775 cites W2981764160 @default.
- W4384200775 cites W2988779213 @default.
- W4384200775 cites W2995533436 @default.
- W4384200775 cites W3003669653 @default.
- W4384200775 cites W3012304415 @default.
- W4384200775 cites W3022181925 @default.
- W4384200775 cites W3025949386 @default.
- W4384200775 cites W3093017969 @default.
- W4384200775 cites W3103858652 @default.
- W4384200775 cites W3105928067 @default.
- W4384200775 cites W3128790873 @default.
- W4384200775 cites W3132280960 @default.
- W4384200775 cites W3135792295 @default.
- W4384200775 cites W3136179920 @default.
- W4384200775 cites W3142858163 @default.
- W4384200775 cites W3143820062 @default.
- W4384200775 cites W3172903441 @default.
- W4384200775 cites W3185054271 @default.
- W4384200775 cites W3194241320 @default.
- W4384200775 cites W3200337160 @default.
- W4384200775 cites W3210907178 @default.
- W4384200775 cites W3216660278 @default.
- W4384200775 cites W4200515797 @default.
- W4384200775 cites W4205563210 @default.
- W4384200775 cites W4212883601 @default.
- W4384200775 cites W4221061152 @default.
- W4384200775 cites W4229679467 @default.
- W4384200775 cites W4234445921 @default.
- W4384200775 cites W4236843340 @default.
- W4384200775 cites W4239472157 @default.
- W4384200775 cites W4239510810 @default.
- W4384200775 cites W4253844648 @default.
- W4384200775 cites W4290546796 @default.
- W4384200775 cites W4317033083 @default.
- W4384200775 cites W4322742244 @default.
- W4384200775 cites W4323925183 @default.
- W4384200775 doi "https://doi.org/10.5194/tc-17-2811-2023" @default.
- W4384200775 hasPublicationYear "2023" @default.
- W4384200775 type Work @default.
- W4384200775 citedByCount "0" @default.
- W4384200775 crossrefType "journal-article" @default.
- W4384200775 hasAuthorship W4384200775A5000655078 @default.
- W4384200775 hasAuthorship W4384200775A5050464239 @default.
- W4384200775 hasAuthorship W4384200775A5051062235 @default.
- W4384200775 hasAuthorship W4384200775A5054914661 @default.
- W4384200775 hasBestOaLocation W43842007751 @default.
- W4384200775 hasConcept C119857082 @default.