Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384201433> ?p ?o ?g. }
- W4384201433 abstract "Abstract This paper deals with the problem of estimating the parameters of heavy-tailed sea clutter in high-resolution radar, when the clutter is modeled by the correlated Pareto type II distribution. Existing estimators based on the maximum likelihood (ML) approach, integer-order moments (IOM) approach, fractional-order moments (FOM), and log-moments (log-MoM) have shown to be sensitive to changes in data correlation. In this work, we resort to a deep learning (DL) approach based on a multi-headed architecture to overcome this problem. Offline training of the artificial neural networks (ANN) is carried out by using several combinations of the clutter parameters, with different correlation degrees. To assess the performance of the proposed estimator, we resort to Monte Carlo simulation, and we observed that it has superior performance over existing approaches in terms of estimation mean square error (MSE) and robustness to changes of the clutter correlation coefficient." @default.
- W4384201433 created "2023-07-14" @default.
- W4384201433 creator A5014201482 @default.
- W4384201433 creator A5026920705 @default.
- W4384201433 creator A5060084426 @default.
- W4384201433 creator A5075507631 @default.
- W4384201433 date "2023-07-13" @default.
- W4384201433 modified "2023-09-26" @default.
- W4384201433 title "Multi-headed deep learning-based estimator for correlated-SIRV Pareto type II distributed clutter" @default.
- W4384201433 cites W1969534197 @default.
- W4384201433 cites W1979502360 @default.
- W4384201433 cites W1983392475 @default.
- W4384201433 cites W1984614739 @default.
- W4384201433 cites W1990044189 @default.
- W4384201433 cites W1996176293 @default.
- W4384201433 cites W2004476066 @default.
- W4384201433 cites W2004681226 @default.
- W4384201433 cites W2016206553 @default.
- W4384201433 cites W2023348117 @default.
- W4384201433 cites W2025162999 @default.
- W4384201433 cites W2031532719 @default.
- W4384201433 cites W2056902548 @default.
- W4384201433 cites W2064675550 @default.
- W4384201433 cites W2079735306 @default.
- W4384201433 cites W2082519226 @default.
- W4384201433 cites W2086457300 @default.
- W4384201433 cites W2102213230 @default.
- W4384201433 cites W2111325602 @default.
- W4384201433 cites W2120126382 @default.
- W4384201433 cites W2134299061 @default.
- W4384201433 cites W2143665486 @default.
- W4384201433 cites W2153344756 @default.
- W4384201433 cites W2153742934 @default.
- W4384201433 cites W2157331557 @default.
- W4384201433 cites W2169290000 @default.
- W4384201433 cites W2666886325 @default.
- W4384201433 cites W2748912188 @default.
- W4384201433 cites W2919115771 @default.
- W4384201433 cites W2937321196 @default.
- W4384201433 cites W2944016395 @default.
- W4384201433 cites W2973810713 @default.
- W4384201433 cites W2992756490 @default.
- W4384201433 cites W2995015263 @default.
- W4384201433 cites W3003900252 @default.
- W4384201433 cites W3013202050 @default.
- W4384201433 cites W3013889931 @default.
- W4384201433 cites W3022643593 @default.
- W4384201433 cites W3100777112 @default.
- W4384201433 cites W3113113237 @default.
- W4384201433 cites W3123271772 @default.
- W4384201433 cites W3148892937 @default.
- W4384201433 cites W4240666350 @default.
- W4384201433 cites W4242597235 @default.
- W4384201433 doi "https://doi.org/10.1186/s13634-023-00982-8" @default.
- W4384201433 hasPublicationYear "2023" @default.
- W4384201433 type Work @default.
- W4384201433 citedByCount "0" @default.
- W4384201433 crossrefType "journal-article" @default.
- W4384201433 hasAuthorship W4384201433A5014201482 @default.
- W4384201433 hasAuthorship W4384201433A5026920705 @default.
- W4384201433 hasAuthorship W4384201433A5060084426 @default.
- W4384201433 hasAuthorship W4384201433A5075507631 @default.
- W4384201433 hasBestOaLocation W43842014331 @default.
- W4384201433 hasConcept C104317684 @default.
- W4384201433 hasConcept C105795698 @default.
- W4384201433 hasConcept C11413529 @default.
- W4384201433 hasConcept C119857082 @default.
- W4384201433 hasConcept C132094186 @default.
- W4384201433 hasConcept C137635306 @default.
- W4384201433 hasConcept C139945424 @default.
- W4384201433 hasConcept C154945302 @default.
- W4384201433 hasConcept C185429906 @default.
- W4384201433 hasConcept C185592680 @default.
- W4384201433 hasConcept C19499675 @default.
- W4384201433 hasConcept C2780092901 @default.
- W4384201433 hasConcept C33923547 @default.
- W4384201433 hasConcept C41008148 @default.
- W4384201433 hasConcept C50644808 @default.
- W4384201433 hasConcept C554190296 @default.
- W4384201433 hasConcept C55493867 @default.
- W4384201433 hasConcept C63479239 @default.
- W4384201433 hasConcept C76155785 @default.
- W4384201433 hasConceptScore W4384201433C104317684 @default.
- W4384201433 hasConceptScore W4384201433C105795698 @default.
- W4384201433 hasConceptScore W4384201433C11413529 @default.
- W4384201433 hasConceptScore W4384201433C119857082 @default.
- W4384201433 hasConceptScore W4384201433C132094186 @default.
- W4384201433 hasConceptScore W4384201433C137635306 @default.
- W4384201433 hasConceptScore W4384201433C139945424 @default.
- W4384201433 hasConceptScore W4384201433C154945302 @default.
- W4384201433 hasConceptScore W4384201433C185429906 @default.
- W4384201433 hasConceptScore W4384201433C185592680 @default.
- W4384201433 hasConceptScore W4384201433C19499675 @default.
- W4384201433 hasConceptScore W4384201433C2780092901 @default.
- W4384201433 hasConceptScore W4384201433C33923547 @default.
- W4384201433 hasConceptScore W4384201433C41008148 @default.
- W4384201433 hasConceptScore W4384201433C50644808 @default.
- W4384201433 hasConceptScore W4384201433C554190296 @default.
- W4384201433 hasConceptScore W4384201433C55493867 @default.
- W4384201433 hasConceptScore W4384201433C63479239 @default.