Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384201473> ?p ?o ?g. }
- W4384201473 abstract "Introduction: Traditional methods to estimate exposure to PM 2.5 (particulate matter with less than 2.5 µm in diameter) have typically relied on limited regulatory monitors and do not consider human mobility and travel. However, the limited spatial coverage of regulatory monitors and the lack of consideration of mobility limit the ability to capture actual air pollution exposure. Methods: This study aims to improve traditional exposure assessment methods for PM 2.5 by incorporating the measurements from a low-cost sensor network (PurpleAir) and regulatory monitors, an automated machine learning modeling framework, and big human mobility data. We develop a monthly-aggregated hourly land use regression (LUR) model based on automated machine learning (AutoML) and assess the model performance across eight metropolitan areas within the US. Results: Our results show that integrating low-cost sensor with regulatory monitor measurements generally improves the AutoML-LUR model accuracy and produces higher spatial variation in PM 2.5 concentration maps compared to using regulatory monitor measurements alone. Feature importance analysis shows factors highly correlated with PM 2.5 concentrations, including satellite aerosol optical depth, meteorological variables, vegetation, and land use. In addition, we incorporate human mobility data on exposure estimates regarding where people visit to identify spatiotemporal hotspots of places with higher risks of exposure, emphasizing the need to consider both visitor numbers and PM 2.5 concentrations when developing exposure reduction strategies. Discussion: This research provides important insights for further public health studies on air pollution by comprehensively assessing the performance of AutoML-LUR models and incorporating human mobility into considering human exposure to air pollution." @default.
- W4384201473 created "2023-07-14" @default.
- W4384201473 creator A5003850660 @default.
- W4384201473 creator A5017353043 @default.
- W4384201473 creator A5038602347 @default.
- W4384201473 creator A5071801759 @default.
- W4384201473 creator A5073577524 @default.
- W4384201473 creator A5074257788 @default.
- W4384201473 date "2023-07-13" @default.
- W4384201473 modified "2023-10-18" @default.
- W4384201473 title "Developing high-resolution PM2.5 exposure models by integrating low-cost sensors, automated machine learning, and big human mobility data" @default.
- W4384201473 cites W1993625536 @default.
- W4384201473 cites W1993983873 @default.
- W4384201473 cites W2063946399 @default.
- W4384201473 cites W2070535949 @default.
- W4384201473 cites W2090084797 @default.
- W4384201473 cites W2098637521 @default.
- W4384201473 cites W2108896901 @default.
- W4384201473 cites W2146190867 @default.
- W4384201473 cites W2340812225 @default.
- W4384201473 cites W2515868912 @default.
- W4384201473 cites W2594967439 @default.
- W4384201473 cites W2607030186 @default.
- W4384201473 cites W2611772571 @default.
- W4384201473 cites W2621900912 @default.
- W4384201473 cites W2747577167 @default.
- W4384201473 cites W2753367820 @default.
- W4384201473 cites W2753989107 @default.
- W4384201473 cites W2754728354 @default.
- W4384201473 cites W2796750419 @default.
- W4384201473 cites W2801721920 @default.
- W4384201473 cites W2803130816 @default.
- W4384201473 cites W2804201186 @default.
- W4384201473 cites W2811500584 @default.
- W4384201473 cites W2895924764 @default.
- W4384201473 cites W2898289295 @default.
- W4384201473 cites W2911964244 @default.
- W4384201473 cites W2951176906 @default.
- W4384201473 cites W2965791769 @default.
- W4384201473 cites W2974404692 @default.
- W4384201473 cites W2981848418 @default.
- W4384201473 cites W2989879616 @default.
- W4384201473 cites W3000078990 @default.
- W4384201473 cites W3011189803 @default.
- W4384201473 cites W3025385814 @default.
- W4384201473 cites W3035795589 @default.
- W4384201473 cites W3037226097 @default.
- W4384201473 cites W3038462551 @default.
- W4384201473 cites W3087962002 @default.
- W4384201473 cites W3109504479 @default.
- W4384201473 cites W3112142079 @default.
- W4384201473 cites W3125817134 @default.
- W4384201473 cites W3130421263 @default.
- W4384201473 cites W3131502700 @default.
- W4384201473 cites W3157992522 @default.
- W4384201473 cites W3164551595 @default.
- W4384201473 cites W3165027003 @default.
- W4384201473 cites W3166176735 @default.
- W4384201473 cites W3169718540 @default.
- W4384201473 cites W3171195076 @default.
- W4384201473 cites W3202318132 @default.
- W4384201473 cites W4206965738 @default.
- W4384201473 cites W4207019134 @default.
- W4384201473 cites W4220935798 @default.
- W4384201473 cites W4288076238 @default.
- W4384201473 cites W4310064234 @default.
- W4384201473 doi "https://doi.org/10.3389/fenvs.2023.1223160" @default.
- W4384201473 hasPublicationYear "2023" @default.
- W4384201473 type Work @default.
- W4384201473 citedByCount "0" @default.
- W4384201473 crossrefType "journal-article" @default.
- W4384201473 hasAuthorship W4384201473A5003850660 @default.
- W4384201473 hasAuthorship W4384201473A5017353043 @default.
- W4384201473 hasAuthorship W4384201473A5038602347 @default.
- W4384201473 hasAuthorship W4384201473A5071801759 @default.
- W4384201473 hasAuthorship W4384201473A5073577524 @default.
- W4384201473 hasAuthorship W4384201473A5074257788 @default.
- W4384201473 hasBestOaLocation W43842014731 @default.
- W4384201473 hasConcept C119857082 @default.
- W4384201473 hasConcept C124101348 @default.
- W4384201473 hasConcept C158739034 @default.
- W4384201473 hasConcept C166957645 @default.
- W4384201473 hasConcept C18903297 @default.
- W4384201473 hasConcept C205649164 @default.
- W4384201473 hasConcept C24245907 @default.
- W4384201473 hasConcept C39432304 @default.
- W4384201473 hasConcept C41008148 @default.
- W4384201473 hasConcept C559116025 @default.
- W4384201473 hasConcept C75684735 @default.
- W4384201473 hasConcept C86803240 @default.
- W4384201473 hasConceptScore W4384201473C119857082 @default.
- W4384201473 hasConceptScore W4384201473C124101348 @default.
- W4384201473 hasConceptScore W4384201473C158739034 @default.
- W4384201473 hasConceptScore W4384201473C166957645 @default.
- W4384201473 hasConceptScore W4384201473C18903297 @default.
- W4384201473 hasConceptScore W4384201473C205649164 @default.
- W4384201473 hasConceptScore W4384201473C24245907 @default.
- W4384201473 hasConceptScore W4384201473C39432304 @default.
- W4384201473 hasConceptScore W4384201473C41008148 @default.
- W4384201473 hasConceptScore W4384201473C559116025 @default.