Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384202016> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4384202016 endingPage "1846" @default.
- W4384202016 startingPage "1846" @default.
- W4384202016 abstract "The maize field environment is complex. Weeds and maize have similar colors and may overlap, and lighting and weather conditions vary. Thus, many methods for the automated differentiation of maize and weeds achieve poor segmentation or cannot be used in real time. In this paper, a weed recognition model based on improved Swin-Unet is proposed. The model first performs semantic segmentation of maize seedlings and uses the resulting mask to identify weeds. U-Net acts as the semantic segmentation framework, and a Swin transformer module is introduced to improve performance. DropBlock regularization, which randomly hides some blocks in crop feature maps, is applied to enhance the generalization ability of the model. Finally, weed areas are identified and segmented with the aid of an improved morphological processing algorithm. The DeepLabv3+, PSANet, Mask R-CNN, original Swin-Unet, and proposed models are trained on a dataset of maize seedling images. The proposed Swin-Unet model outperforms the others, achieving a mean intersection over union of 92.75%, mean pixel accuracy of 95.57%, and inference speed of 15.1 FPS. Our model could be used for accurate, real-time segmentation of crops and weeds and as a reference for the development of intelligent agricultural equipment." @default.
- W4384202016 created "2023-07-14" @default.
- W4384202016 creator A5019974153 @default.
- W4384202016 creator A5029134519 @default.
- W4384202016 creator A5032474012 @default.
- W4384202016 creator A5033856811 @default.
- W4384202016 creator A5059797686 @default.
- W4384202016 date "2023-07-13" @default.
- W4384202016 modified "2023-10-17" @default.
- W4384202016 title "Weed Identification in Maize Fields Based on Improved Swin-Unet" @default.
- W4384202016 cites W1901129140 @default.
- W4384202016 cites W2069223274 @default.
- W4384202016 cites W2618530766 @default.
- W4384202016 cites W2889730635 @default.
- W4384202016 cites W2900595477 @default.
- W4384202016 cites W3007485446 @default.
- W4384202016 cites W3020996329 @default.
- W4384202016 cites W3022353848 @default.
- W4384202016 cites W3024463703 @default.
- W4384202016 cites W3044381974 @default.
- W4384202016 cites W3047983281 @default.
- W4384202016 cites W3136950817 @default.
- W4384202016 cites W4210380580 @default.
- W4384202016 cites W4224219562 @default.
- W4384202016 cites W4306158096 @default.
- W4384202016 cites W4321232185 @default.
- W4384202016 doi "https://doi.org/10.3390/agronomy13071846" @default.
- W4384202016 hasPublicationYear "2023" @default.
- W4384202016 type Work @default.
- W4384202016 citedByCount "0" @default.
- W4384202016 crossrefType "journal-article" @default.
- W4384202016 hasAuthorship W4384202016A5019974153 @default.
- W4384202016 hasAuthorship W4384202016A5029134519 @default.
- W4384202016 hasAuthorship W4384202016A5032474012 @default.
- W4384202016 hasAuthorship W4384202016A5033856811 @default.
- W4384202016 hasAuthorship W4384202016A5059797686 @default.
- W4384202016 hasBestOaLocation W43842020161 @default.
- W4384202016 hasConcept C153180895 @default.
- W4384202016 hasConcept C154945302 @default.
- W4384202016 hasConcept C160633673 @default.
- W4384202016 hasConcept C2775891814 @default.
- W4384202016 hasConcept C41008148 @default.
- W4384202016 hasConcept C6557445 @default.
- W4384202016 hasConcept C86803240 @default.
- W4384202016 hasConcept C89600930 @default.
- W4384202016 hasConceptScore W4384202016C153180895 @default.
- W4384202016 hasConceptScore W4384202016C154945302 @default.
- W4384202016 hasConceptScore W4384202016C160633673 @default.
- W4384202016 hasConceptScore W4384202016C2775891814 @default.
- W4384202016 hasConceptScore W4384202016C41008148 @default.
- W4384202016 hasConceptScore W4384202016C6557445 @default.
- W4384202016 hasConceptScore W4384202016C86803240 @default.
- W4384202016 hasConceptScore W4384202016C89600930 @default.
- W4384202016 hasFunder F4320329790 @default.
- W4384202016 hasIssue "7" @default.
- W4384202016 hasLocation W43842020161 @default.
- W4384202016 hasOpenAccess W4384202016 @default.
- W4384202016 hasPrimaryLocation W43842020161 @default.
- W4384202016 hasRelatedWork W2006443041 @default.
- W4384202016 hasRelatedWork W2136485282 @default.
- W4384202016 hasRelatedWork W2394462683 @default.
- W4384202016 hasRelatedWork W2510758617 @default.
- W4384202016 hasRelatedWork W2546871836 @default.
- W4384202016 hasRelatedWork W2547748020 @default.
- W4384202016 hasRelatedWork W2907667403 @default.
- W4384202016 hasRelatedWork W3039022597 @default.
- W4384202016 hasRelatedWork W3160284275 @default.
- W4384202016 hasRelatedWork W4206076898 @default.
- W4384202016 hasVolume "13" @default.
- W4384202016 isParatext "false" @default.
- W4384202016 isRetracted "false" @default.
- W4384202016 workType "article" @default.