Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384202198> ?p ?o ?g. }
- W4384202198 endingPage "490" @default.
- W4384202198 startingPage "482" @default.
- W4384202198 abstract "Context. This commentary is based on an innovative approach to the development of predictive analytics. It is centered on the development of predictive models for varying stages of chronic disease through integrating all types of datasets, adds various new features to a theoretically driven data warehousing, creates purpose-specific prediction models, and integrates multi-criteria predictions of chronic disease progression based on a biomedical evolutionary learning platform. After merging across-center databases based on the risk factors identified from modeling the predictors of chronic disease progression, the collaborative investigators could conduct multi-center verification of the predictive model and further develop a clinical decision support system coupled with visualization of a shared decision-making feature for patient care. The Study Problem. The success of health services management research is dependent upon the stability of pattern detection and the usefulness of nosological classification formulated from big-data-to-knowledge research on chronic conditions. However, longitudinal observations with multiple waves of predictors and outcomes are needed to capture the evolution of polychronic conditions. Motivation. The transitional probabilities could be estimated from big-data analysis with further verification. Simulation or predictive models could then generate a useful explanatory pathogenesis of the end-stage-disorder or outcomes. Hence, the clinical decision support system for patient-centered interventions could be systematically designed and executed. Methodology. A customized algorithm for polychronic conditions coupled with constraints-oriented reasoning approaches is suggested. Based on theoretical specifications of causal inquiries, we could mitigate the effects of multiple confounding factors in conducting evaluation research on the determinants of patient care outcomes. This is what we consider as the mechanism for avoiding the black-box expression in the formulation of predictive analytics. The remaining task is to gather new data to verify the practical utility of the proposed and validated predictive equation(s). More specifically, this includes two approaches guiding future research on chronic disease and care management: (1) To develop a biomedical evolutionary learning platform to predict the risk of polychronic conditions at various stages, especially for predicting the micro- and macro-cardiovascular complications experienced by patients with Type 2 diabetes for multidisciplinary care; and (2) to formulate appropriate prescriptive intervention services, such as patient-centered care management interventions for a high-risk group of patients with polychronic conditions. Conclusions. The commentary has identified trends, challenges, and solutions in conducting innovative AI-based healthcare research that can improve understandings of disease-state transitions from diabetes to other chronic polychronic conditions. Hence, better predictive models could be further formulated to expand from inductive (problem solving) to deductive (theory based and hypothesis testing) inquiries in care management research." @default.
- W4384202198 created "2023-07-14" @default.
- W4384202198 creator A5001859187 @default.
- W4384202198 creator A5011206438 @default.
- W4384202198 date "2023-07-13" @default.
- W4384202198 modified "2023-09-29" @default.
- W4384202198 title "Predictive Analytics with a Transdisciplinary Framework in Promoting Patient-Centric Care of Polychronic Conditions: Trends, Challenges, and Solutions" @default.
- W4384202198 cites W1526927233 @default.
- W4384202198 cites W1971343797 @default.
- W4384202198 cites W1987042042 @default.
- W4384202198 cites W2033686520 @default.
- W4384202198 cites W2036493114 @default.
- W4384202198 cites W2051243563 @default.
- W4384202198 cites W2091322121 @default.
- W4384202198 cites W2111824270 @default.
- W4384202198 cites W2126946832 @default.
- W4384202198 cites W2155965977 @default.
- W4384202198 cites W2167745208 @default.
- W4384202198 cites W2503452281 @default.
- W4384202198 cites W2605492423 @default.
- W4384202198 cites W2766165895 @default.
- W4384202198 cites W2783104674 @default.
- W4384202198 cites W2791725064 @default.
- W4384202198 cites W2793190800 @default.
- W4384202198 cites W2974911641 @default.
- W4384202198 cites W2981121978 @default.
- W4384202198 cites W2986999055 @default.
- W4384202198 cites W2991464596 @default.
- W4384202198 cites W3095841706 @default.
- W4384202198 cites W3166539141 @default.
- W4384202198 cites W3191763290 @default.
- W4384202198 cites W3194462099 @default.
- W4384202198 cites W4228998329 @default.
- W4384202198 cites W4280497223 @default.
- W4384202198 cites W4296142887 @default.
- W4384202198 cites W4306178707 @default.
- W4384202198 cites W4308581716 @default.
- W4384202198 cites W4327621217 @default.
- W4384202198 cites W4362610473 @default.
- W4384202198 cites W4366769842 @default.
- W4384202198 cites W4378781011 @default.
- W4384202198 doi "https://doi.org/10.3390/ai4030026" @default.
- W4384202198 hasPublicationYear "2023" @default.
- W4384202198 type Work @default.
- W4384202198 citedByCount "0" @default.
- W4384202198 crossrefType "journal-article" @default.
- W4384202198 hasAuthorship W4384202198A5001859187 @default.
- W4384202198 hasAuthorship W4384202198A5011206438 @default.
- W4384202198 hasBestOaLocation W43842021981 @default.
- W4384202198 hasConcept C107327155 @default.
- W4384202198 hasConcept C118552586 @default.
- W4384202198 hasConcept C119857082 @default.
- W4384202198 hasConcept C124101348 @default.
- W4384202198 hasConcept C142724271 @default.
- W4384202198 hasConcept C151730666 @default.
- W4384202198 hasConcept C154945302 @default.
- W4384202198 hasConcept C2522767166 @default.
- W4384202198 hasConcept C27415008 @default.
- W4384202198 hasConcept C2779134260 @default.
- W4384202198 hasConcept C2779343474 @default.
- W4384202198 hasConcept C41008148 @default.
- W4384202198 hasConcept C63527458 @default.
- W4384202198 hasConcept C71924100 @default.
- W4384202198 hasConcept C75684735 @default.
- W4384202198 hasConcept C79158427 @default.
- W4384202198 hasConcept C83209312 @default.
- W4384202198 hasConcept C86803240 @default.
- W4384202198 hasConceptScore W4384202198C107327155 @default.
- W4384202198 hasConceptScore W4384202198C118552586 @default.
- W4384202198 hasConceptScore W4384202198C119857082 @default.
- W4384202198 hasConceptScore W4384202198C124101348 @default.
- W4384202198 hasConceptScore W4384202198C142724271 @default.
- W4384202198 hasConceptScore W4384202198C151730666 @default.
- W4384202198 hasConceptScore W4384202198C154945302 @default.
- W4384202198 hasConceptScore W4384202198C2522767166 @default.
- W4384202198 hasConceptScore W4384202198C27415008 @default.
- W4384202198 hasConceptScore W4384202198C2779134260 @default.
- W4384202198 hasConceptScore W4384202198C2779343474 @default.
- W4384202198 hasConceptScore W4384202198C41008148 @default.
- W4384202198 hasConceptScore W4384202198C63527458 @default.
- W4384202198 hasConceptScore W4384202198C71924100 @default.
- W4384202198 hasConceptScore W4384202198C75684735 @default.
- W4384202198 hasConceptScore W4384202198C79158427 @default.
- W4384202198 hasConceptScore W4384202198C83209312 @default.
- W4384202198 hasConceptScore W4384202198C86803240 @default.
- W4384202198 hasIssue "3" @default.
- W4384202198 hasLocation W43842021981 @default.
- W4384202198 hasOpenAccess W4384202198 @default.
- W4384202198 hasPrimaryLocation W43842021981 @default.
- W4384202198 hasRelatedWork W2052370551 @default.
- W4384202198 hasRelatedWork W2515921780 @default.
- W4384202198 hasRelatedWork W2564406132 @default.
- W4384202198 hasRelatedWork W2998881927 @default.
- W4384202198 hasRelatedWork W3138622659 @default.
- W4384202198 hasRelatedWork W38581530 @default.
- W4384202198 hasRelatedWork W4240347109 @default.
- W4384202198 hasRelatedWork W4244597362 @default.
- W4384202198 hasRelatedWork W4249181676 @default.