Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384202240> ?p ?o ?g. }
- W4384202240 endingPage "8124" @default.
- W4384202240 startingPage "8124" @default.
- W4384202240 abstract "The problem of data classification or data fitting is widely applicable in a multitude of scientific areas, and for this reason, a number of machine learning models have been developed. However, in many cases, these models present problems of overfitting and cannot generalize satisfactorily to unknown data. Furthermore, in many cases, many of the features of the input data do not contribute to learning, or there may even be hidden correlations between the features of the dataset. The purpose of the proposed method is to significantly reduce data classification or regression errors through the usage of a technique that utilizes the particle swarm optimization method and grammatical evolution. This method is divided into two phases. In the first phase, artificial features are constructed using grammatical evolution, and the progress of the creation of these features is controlled by the particle swarm optimization method. In addition, this new technique utilizes penalty factors to limit the generated features to a range of values to make training machine learning models more efficient. In the second phase of the proposed technique, these features are exploited to transform the original dataset, and then any machine learning method can be applied to this dataset. The performance of the proposed method was measured on some benchmark datasets from the relevant literature. Also, the method was tested against a series of widely used machine learning models. The experiments performed showed a significant improvement of 30% on average in the classification datasets and an even greater improvement of 60% in the data fitting datasets." @default.
- W4384202240 created "2023-07-14" @default.
- W4384202240 creator A5000270870 @default.
- W4384202240 creator A5010283810 @default.
- W4384202240 date "2023-07-12" @default.
- W4384202240 modified "2023-09-29" @default.
- W4384202240 title "A Feature Construction Method That Combines Particle Swarm Optimization and Grammatical Evolution" @default.
- W4384202240 cites W1505753439 @default.
- W4384202240 cites W1521385032 @default.
- W4384202240 cites W1545302199 @default.
- W4384202240 cites W1563194724 @default.
- W4384202240 cites W1570592190 @default.
- W4384202240 cites W1575664487 @default.
- W4384202240 cites W1769141387 @default.
- W4384202240 cites W1964118427 @default.
- W4384202240 cites W1969557815 @default.
- W4384202240 cites W1979156432 @default.
- W4384202240 cites W1982574713 @default.
- W4384202240 cites W1984501821 @default.
- W4384202240 cites W1987552279 @default.
- W4384202240 cites W1989637899 @default.
- W4384202240 cites W1995396954 @default.
- W4384202240 cites W1995833382 @default.
- W4384202240 cites W1999258445 @default.
- W4384202240 cites W2006252838 @default.
- W4384202240 cites W2011064622 @default.
- W4384202240 cites W2017597960 @default.
- W4384202240 cites W2019458237 @default.
- W4384202240 cites W2021332454 @default.
- W4384202240 cites W2024195378 @default.
- W4384202240 cites W2025136035 @default.
- W4384202240 cites W2029469881 @default.
- W4384202240 cites W2041092292 @default.
- W4384202240 cites W2044045718 @default.
- W4384202240 cites W2049315923 @default.
- W4384202240 cites W2051090741 @default.
- W4384202240 cites W2051589410 @default.
- W4384202240 cites W2053744708 @default.
- W4384202240 cites W2054589207 @default.
- W4384202240 cites W2061933243 @default.
- W4384202240 cites W2070242706 @default.
- W4384202240 cites W2076118331 @default.
- W4384202240 cites W2076362245 @default.
- W4384202240 cites W2078760541 @default.
- W4384202240 cites W2080913375 @default.
- W4384202240 cites W2081749411 @default.
- W4384202240 cites W2083528810 @default.
- W4384202240 cites W2083729635 @default.
- W4384202240 cites W2087849123 @default.
- W4384202240 cites W2091780949 @default.
- W4384202240 cites W2092224884 @default.
- W4384202240 cites W2094823545 @default.
- W4384202240 cites W2096352448 @default.
- W4384202240 cites W2100534701 @default.
- W4384202240 cites W2100928906 @default.
- W4384202240 cites W2101097701 @default.
- W4384202240 cites W2105382646 @default.
- W4384202240 cites W2106688677 @default.
- W4384202240 cites W2110048843 @default.
- W4384202240 cites W2111935653 @default.
- W4384202240 cites W2113021507 @default.
- W4384202240 cites W2128420091 @default.
- W4384202240 cites W2135304732 @default.
- W4384202240 cites W2135733427 @default.
- W4384202240 cites W2136394324 @default.
- W4384202240 cites W2146722066 @default.
- W4384202240 cites W2149376583 @default.
- W4384202240 cites W2151205149 @default.
- W4384202240 cites W2153947532 @default.
- W4384202240 cites W2154053567 @default.
- W4384202240 cites W2163117770 @default.
- W4384202240 cites W2177066871 @default.
- W4384202240 cites W2213612645 @default.
- W4384202240 cites W2236744271 @default.
- W4384202240 cites W2251655261 @default.
- W4384202240 cites W2290145898 @default.
- W4384202240 cites W2295918854 @default.
- W4384202240 cites W2296218809 @default.
- W4384202240 cites W2338355707 @default.
- W4384202240 cites W2419175238 @default.
- W4384202240 cites W2436108096 @default.
- W4384202240 cites W2543580944 @default.
- W4384202240 cites W2562498401 @default.
- W4384202240 cites W2570502259 @default.
- W4384202240 cites W2574562607 @default.
- W4384202240 cites W2584637656 @default.
- W4384202240 cites W2596628535 @default.
- W4384202240 cites W2604736517 @default.
- W4384202240 cites W2743218360 @default.
- W4384202240 cites W2767363635 @default.
- W4384202240 cites W2784246028 @default.
- W4384202240 cites W2803993721 @default.
- W4384202240 cites W2888794318 @default.
- W4384202240 cites W2901942917 @default.
- W4384202240 cites W2904907152 @default.
- W4384202240 cites W2942927996 @default.
- W4384202240 cites W2947059554 @default.
- W4384202240 cites W2962712569 @default.