Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384202341> ?p ?o ?g. }
- W4384202341 endingPage "3080" @default.
- W4384202341 startingPage "3080" @default.
- W4384202341 abstract "This paper introduces a parallel meta-heuristic algorithm called Cuckoo Flower Search (CFS). This algorithm combines the Flower Pollination Algorithm (FPA) and Cuckoo Search (CS) to train Multi-Layer Perceptron (MLP) models. The algorithm is evaluated on standard benchmark problems and its competitiveness is demonstrated against other state-of-the-art algorithms. Multiple datasets are utilized to assess the performance of CFS for MLP training. The experimental results are compared with various algorithms such as Genetic Algorithm (GA), Grey Wolf Optimization (GWO), Particle Swarm Optimization (PSO), Evolutionary Search (ES), Ant Colony Optimization (ACO), and Population-based Incremental Learning (PBIL). Statistical tests are conducted to validate the superiority of the CFS algorithm in finding global optimum solutions. The results indicate that CFS achieves significantly better outcomes with a higher convergence rate when compared to the other algorithms tested. This highlights the effectiveness of CFS in solving MLP optimization problems and its potential as a competitive algorithm in the field." @default.
- W4384202341 created "2023-07-14" @default.
- W4384202341 creator A5044240021 @default.
- W4384202341 creator A5060312310 @default.
- W4384202341 creator A5085767753 @default.
- W4384202341 date "2023-07-12" @default.
- W4384202341 modified "2023-10-14" @default.
- W4384202341 title "A New Parallel Cuckoo Flower Search Algorithm for Training Multi-Layer Perceptron" @default.
- W4384202341 cites W1490180010 @default.
- W4384202341 cites W1576660662 @default.
- W4384202341 cites W1763200058 @default.
- W4384202341 cites W1824158299 @default.
- W4384202341 cites W1971259134 @default.
- W4384202341 cites W1976744965 @default.
- W4384202341 cites W1980526844 @default.
- W4384202341 cites W1986760892 @default.
- W4384202341 cites W1990517717 @default.
- W4384202341 cites W1995341919 @default.
- W4384202341 cites W1997600725 @default.
- W4384202341 cites W2000259947 @default.
- W4384202341 cites W2002302337 @default.
- W4384202341 cites W2003243598 @default.
- W4384202341 cites W2003961265 @default.
- W4384202341 cites W2021309800 @default.
- W4384202341 cites W2026305126 @default.
- W4384202341 cites W2026422512 @default.
- W4384202341 cites W2053498776 @default.
- W4384202341 cites W2070448096 @default.
- W4384202341 cites W2096166399 @default.
- W4384202341 cites W2102423302 @default.
- W4384202341 cites W2108604074 @default.
- W4384202341 cites W2123943029 @default.
- W4384202341 cites W2129018774 @default.
- W4384202341 cites W2130459697 @default.
- W4384202341 cites W2146439308 @default.
- W4384202341 cites W2153060984 @default.
- W4384202341 cites W2290883490 @default.
- W4384202341 cites W2490324144 @default.
- W4384202341 cites W3086950481 @default.
- W4384202341 cites W3122442859 @default.
- W4384202341 cites W3170945786 @default.
- W4384202341 cites W4210580908 @default.
- W4384202341 cites W4231254085 @default.
- W4384202341 cites W4238144975 @default.
- W4384202341 cites W4244471710 @default.
- W4384202341 cites W4323687864 @default.
- W4384202341 cites W4376870450 @default.
- W4384202341 cites W4381249713 @default.
- W4384202341 cites W883434633 @default.
- W4384202341 doi "https://doi.org/10.3390/math11143080" @default.
- W4384202341 hasPublicationYear "2023" @default.
- W4384202341 type Work @default.
- W4384202341 citedByCount "0" @default.
- W4384202341 crossrefType "journal-article" @default.
- W4384202341 hasAuthorship W4384202341A5044240021 @default.
- W4384202341 hasAuthorship W4384202341A5060312310 @default.
- W4384202341 hasAuthorship W4384202341A5085767753 @default.
- W4384202341 hasBestOaLocation W43842023411 @default.
- W4384202341 hasConcept C109718341 @default.
- W4384202341 hasConcept C11413529 @default.
- W4384202341 hasConcept C117241572 @default.
- W4384202341 hasConcept C119857082 @default.
- W4384202341 hasConcept C126255220 @default.
- W4384202341 hasConcept C13280743 @default.
- W4384202341 hasConcept C143574069 @default.
- W4384202341 hasConcept C144024400 @default.
- W4384202341 hasConcept C149923435 @default.
- W4384202341 hasConcept C154945302 @default.
- W4384202341 hasConcept C184497298 @default.
- W4384202341 hasConcept C185798385 @default.
- W4384202341 hasConcept C205649164 @default.
- W4384202341 hasConcept C2908647359 @default.
- W4384202341 hasConcept C33923547 @default.
- W4384202341 hasConcept C40128228 @default.
- W4384202341 hasConcept C41008148 @default.
- W4384202341 hasConcept C4935549 @default.
- W4384202341 hasConcept C50644808 @default.
- W4384202341 hasConcept C60908668 @default.
- W4384202341 hasConcept C85617194 @default.
- W4384202341 hasConcept C8880873 @default.
- W4384202341 hasConcept C97133563 @default.
- W4384202341 hasConceptScore W4384202341C109718341 @default.
- W4384202341 hasConceptScore W4384202341C11413529 @default.
- W4384202341 hasConceptScore W4384202341C117241572 @default.
- W4384202341 hasConceptScore W4384202341C119857082 @default.
- W4384202341 hasConceptScore W4384202341C126255220 @default.
- W4384202341 hasConceptScore W4384202341C13280743 @default.
- W4384202341 hasConceptScore W4384202341C143574069 @default.
- W4384202341 hasConceptScore W4384202341C144024400 @default.
- W4384202341 hasConceptScore W4384202341C149923435 @default.
- W4384202341 hasConceptScore W4384202341C154945302 @default.
- W4384202341 hasConceptScore W4384202341C184497298 @default.
- W4384202341 hasConceptScore W4384202341C185798385 @default.
- W4384202341 hasConceptScore W4384202341C205649164 @default.
- W4384202341 hasConceptScore W4384202341C2908647359 @default.
- W4384202341 hasConceptScore W4384202341C33923547 @default.
- W4384202341 hasConceptScore W4384202341C40128228 @default.
- W4384202341 hasConceptScore W4384202341C41008148 @default.