Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384202561> ?p ?o ?g. }
- W4384202561 endingPage "10943" @default.
- W4384202561 startingPage "10943" @default.
- W4384202561 abstract "Wi-Fi-based indoor positioning systems are becoming increasingly prevalent in digital transitions; therefore, ensuring accurate and robust positioning is essential to supporting the growth in demand for smartphones’ location-based services. The indoor positioning system on a smartphone, which is generally based on Wi-Fi received signal strength (RSS) measurements or the fingerprinting comparison technique, uses the K-NN algorithm to estimate the position due to its high accuracy. The fingerprinting algorithm is popular due to its ease of implementation and its ability to produce the desired accuracy. However, in a practical environment, the Wi-Fi signal strength-based positioning system is highly influenced by external factors such as changes in the environment, human interventions, obstacles in the signal path, signal inconsistency, signal loss due to the barriers, the non-line of sight (NLOS) during signal propagation, and the high level of fluctuations in the RSS, which affects location accuracy. In this paper, we propose a method that combines pedestrian dead reckoning (PDR) and Wi-Fi fingerprinting to select a k-node to participate in the K-NN algorithm for fingerprinting-based IPSs. The selected K-node is used for the K-NN algorithm to improve the robustness and overall accuracy. The proposed hybrid method can overcome practical environmental issues and reduces the KNN algorithm’s complexity by selecting the nearest neighbors’ search space for comparison using the PDR position estimate as the reference position. Our approach provides a sustainable solution for indoor positioning systems, reducing energy consumption and improving the overall environmental impact. The proposed method has potential applications in various domains, such as smart buildings, healthcare, and retail. The proposed method outperforms the traditional KNN algorithm in our experimental condition since its average position error is less than 1.2 m, and provides better accuracy." @default.
- W4384202561 created "2023-07-14" @default.
- W4384202561 creator A5004265755 @default.
- W4384202561 creator A5032270952 @default.
- W4384202561 date "2023-07-12" @default.
- W4384202561 modified "2023-09-29" @default.
- W4384202561 title "Combining Wi-Fi Fingerprinting and Pedestrian Dead Reckoning to Mitigate External Factors for a Sustainable Indoor Positioning System" @default.
- W4384202561 cites W1544232871 @default.
- W4384202561 cites W1981831056 @default.
- W4384202561 cites W2011224697 @default.
- W4384202561 cites W2026041271 @default.
- W4384202561 cites W2031352156 @default.
- W4384202561 cites W2081082468 @default.
- W4384202561 cites W2099817569 @default.
- W4384202561 cites W2100989187 @default.
- W4384202561 cites W2106985027 @default.
- W4384202561 cites W2114254062 @default.
- W4384202561 cites W2117845256 @default.
- W4384202561 cites W2122915435 @default.
- W4384202561 cites W2132914768 @default.
- W4384202561 cites W2138452244 @default.
- W4384202561 cites W2153195033 @default.
- W4384202561 cites W2265608995 @default.
- W4384202561 cites W2278572312 @default.
- W4384202561 cites W2332426280 @default.
- W4384202561 cites W2542640152 @default.
- W4384202561 cites W2548960336 @default.
- W4384202561 cites W2562522049 @default.
- W4384202561 cites W2587585490 @default.
- W4384202561 cites W2607595839 @default.
- W4384202561 cites W2608130950 @default.
- W4384202561 cites W2765818497 @default.
- W4384202561 cites W2785281828 @default.
- W4384202561 cites W2790279276 @default.
- W4384202561 cites W2806729898 @default.
- W4384202561 cites W2895879514 @default.
- W4384202561 cites W2898051988 @default.
- W4384202561 cites W2922059131 @default.
- W4384202561 cites W2924468481 @default.
- W4384202561 cites W2941555964 @default.
- W4384202561 cites W2985031189 @default.
- W4384202561 cites W3036267623 @default.
- W4384202561 cites W3037180054 @default.
- W4384202561 cites W3106393161 @default.
- W4384202561 cites W3122144981 @default.
- W4384202561 cites W4210659589 @default.
- W4384202561 cites W4313058480 @default.
- W4384202561 cites W4322706610 @default.
- W4384202561 doi "https://doi.org/10.3390/su151410943" @default.
- W4384202561 hasPublicationYear "2023" @default.
- W4384202561 type Work @default.
- W4384202561 citedByCount "0" @default.
- W4384202561 crossrefType "journal-article" @default.
- W4384202561 hasAuthorship W4384202561A5004265755 @default.
- W4384202561 hasAuthorship W4384202561A5032270952 @default.
- W4384202561 hasBestOaLocation W43842025611 @default.
- W4384202561 hasConcept C104317684 @default.
- W4384202561 hasConcept C106165642 @default.
- W4384202561 hasConcept C111919701 @default.
- W4384202561 hasConcept C124101348 @default.
- W4384202561 hasConcept C127413603 @default.
- W4384202561 hasConcept C154910267 @default.
- W4384202561 hasConcept C176808163 @default.
- W4384202561 hasConcept C185592680 @default.
- W4384202561 hasConcept C187394410 @default.
- W4384202561 hasConcept C22212356 @default.
- W4384202561 hasConcept C2385561 @default.
- W4384202561 hasConcept C24590314 @default.
- W4384202561 hasConcept C2777113093 @default.
- W4384202561 hasConcept C2777486483 @default.
- W4384202561 hasConcept C2778603505 @default.
- W4384202561 hasConcept C31258907 @default.
- W4384202561 hasConcept C41008148 @default.
- W4384202561 hasConcept C44154836 @default.
- W4384202561 hasConcept C55493867 @default.
- W4384202561 hasConcept C555944384 @default.
- W4384202561 hasConcept C60229501 @default.
- W4384202561 hasConcept C62611344 @default.
- W4384202561 hasConcept C63479239 @default.
- W4384202561 hasConcept C66938386 @default.
- W4384202561 hasConcept C76155785 @default.
- W4384202561 hasConcept C79403827 @default.
- W4384202561 hasConcept C89805583 @default.
- W4384202561 hasConceptScore W4384202561C104317684 @default.
- W4384202561 hasConceptScore W4384202561C106165642 @default.
- W4384202561 hasConceptScore W4384202561C111919701 @default.
- W4384202561 hasConceptScore W4384202561C124101348 @default.
- W4384202561 hasConceptScore W4384202561C127413603 @default.
- W4384202561 hasConceptScore W4384202561C154910267 @default.
- W4384202561 hasConceptScore W4384202561C176808163 @default.
- W4384202561 hasConceptScore W4384202561C185592680 @default.
- W4384202561 hasConceptScore W4384202561C187394410 @default.
- W4384202561 hasConceptScore W4384202561C22212356 @default.
- W4384202561 hasConceptScore W4384202561C2385561 @default.
- W4384202561 hasConceptScore W4384202561C24590314 @default.
- W4384202561 hasConceptScore W4384202561C2777113093 @default.
- W4384202561 hasConceptScore W4384202561C2777486483 @default.
- W4384202561 hasConceptScore W4384202561C2778603505 @default.