Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384203465> ?p ?o ?g. }
- W4384203465 abstract "Abstract Computed tomography (CT) scans have been shown to be an effective way of improving diagnostic efficacy and reducing lung cancer mortality. However, distinguishing benign from malignant nodules in CT imaging remains challenging. This study aims to develop a multiple-scale residual network (MResNet) to automatically and precisely extract the general feature of lung nodules, and classify lung nodules based on deep learning. The MResNet aggregates the advantages of residual units and pyramid pooling module (PPM) to learn key features and extract the general feature for lung nodule classification. Specially, the MResNet uses the ResNet as a backbone network to learn contextual information and discriminate feature representation. Meanwhile, the PPM is used to fuse features under four different scales, including the coarse scale and the fine-grained scale to obtain more general lung features of the CT image. MResNet had an accuracy of 99.12%, a sensitivity of 98.64%, a specificity of 97.87%, a positive predictive value (PPV) of 99.92%, and a negative predictive value (NPV) of 97.87% in the training set. Additionally, its area under the receiver operating characteristic curve (AUC) was 0.9998 (0.99976–0.99991). MResNet's accuracy, sensitivity, specificity, PPV, NPV, and AUC in the testing set were 85.23%, 92.79%, 72.89%, 84.56%, 86.34%, and 0.9275 (0.91662–0.93833), respectively. The developed MResNet performed exceptionally well in estimating the malignancy risk of pulmonary nodules found on CT. The model has the potential to provide reliable and reproducible malignancy risk scores for clinicians and radiologists, thereby optimizing lung cancer screening management." @default.
- W4384203465 created "2023-07-14" @default.
- W4384203465 creator A5014078154 @default.
- W4384203465 creator A5035440542 @default.
- W4384203465 creator A5036712663 @default.
- W4384203465 creator A5050711042 @default.
- W4384203465 date "2023-07-13" @default.
- W4384203465 modified "2023-09-27" @default.
- W4384203465 title "A diagnostic classification of lung nodules using multiple-scale residual network" @default.
- W4384203465 cites W130099911 @default.
- W4384203465 cites W1832115302 @default.
- W4384203465 cites W1944881280 @default.
- W4384203465 cites W2023385105 @default.
- W4384203465 cites W2194775991 @default.
- W4384203465 cites W2394599079 @default.
- W4384203465 cites W2508069933 @default.
- W4384203465 cites W2543630535 @default.
- W4384203465 cites W2560023338 @default.
- W4384203465 cites W2570618306 @default.
- W4384203465 cites W2743008510 @default.
- W4384203465 cites W2759790855 @default.
- W4384203465 cites W2770616710 @default.
- W4384203465 cites W2791260913 @default.
- W4384203465 cites W2802170901 @default.
- W4384203465 cites W2807519281 @default.
- W4384203465 cites W2888848380 @default.
- W4384203465 cites W2900840442 @default.
- W4384203465 cites W2940487144 @default.
- W4384203465 cites W2948691893 @default.
- W4384203465 cites W2963172626 @default.
- W4384203465 cites W2967412240 @default.
- W4384203465 cites W2971017576 @default.
- W4384203465 cites W2997947674 @default.
- W4384203465 cites W3002714426 @default.
- W4384203465 cites W3005158781 @default.
- W4384203465 cites W3011138713 @default.
- W4384203465 cites W3013146920 @default.
- W4384203465 cites W3083291461 @default.
- W4384203465 cites W3119005666 @default.
- W4384203465 cites W3128646645 @default.
- W4384203465 cites W3146097188 @default.
- W4384203465 cites W3161948739 @default.
- W4384203465 cites W3166873558 @default.
- W4384203465 cites W3191603129 @default.
- W4384203465 cites W3202309904 @default.
- W4384203465 cites W4206841660 @default.
- W4384203465 cites W4285719527 @default.
- W4384203465 cites W4288042517 @default.
- W4384203465 cites W4288063401 @default.
- W4384203465 cites W4361204450 @default.
- W4384203465 doi "https://doi.org/10.1038/s41598-023-38350-z" @default.
- W4384203465 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37443333" @default.
- W4384203465 hasPublicationYear "2023" @default.
- W4384203465 type Work @default.
- W4384203465 citedByCount "0" @default.
- W4384203465 crossrefType "journal-article" @default.
- W4384203465 hasAuthorship W4384203465A5014078154 @default.
- W4384203465 hasAuthorship W4384203465A5035440542 @default.
- W4384203465 hasAuthorship W4384203465A5036712663 @default.
- W4384203465 hasAuthorship W4384203465A5050711042 @default.
- W4384203465 hasBestOaLocation W43842034651 @default.
- W4384203465 hasConcept C11413529 @default.
- W4384203465 hasConcept C119857082 @default.
- W4384203465 hasConcept C121332964 @default.
- W4384203465 hasConcept C126322002 @default.
- W4384203465 hasConcept C126838900 @default.
- W4384203465 hasConcept C138885662 @default.
- W4384203465 hasConcept C142724271 @default.
- W4384203465 hasConcept C151730666 @default.
- W4384203465 hasConcept C153180895 @default.
- W4384203465 hasConcept C154945302 @default.
- W4384203465 hasConcept C155512373 @default.
- W4384203465 hasConcept C169903167 @default.
- W4384203465 hasConcept C2776256026 @default.
- W4384203465 hasConcept C2776401178 @default.
- W4384203465 hasConcept C2776731575 @default.
- W4384203465 hasConcept C2777714996 @default.
- W4384203465 hasConcept C2778755073 @default.
- W4384203465 hasConcept C2779399171 @default.
- W4384203465 hasConcept C41008148 @default.
- W4384203465 hasConcept C41895202 @default.
- W4384203465 hasConcept C544519230 @default.
- W4384203465 hasConcept C58471807 @default.
- W4384203465 hasConcept C62520636 @default.
- W4384203465 hasConcept C70437156 @default.
- W4384203465 hasConcept C71924100 @default.
- W4384203465 hasConcept C86803240 @default.
- W4384203465 hasConceptScore W4384203465C11413529 @default.
- W4384203465 hasConceptScore W4384203465C119857082 @default.
- W4384203465 hasConceptScore W4384203465C121332964 @default.
- W4384203465 hasConceptScore W4384203465C126322002 @default.
- W4384203465 hasConceptScore W4384203465C126838900 @default.
- W4384203465 hasConceptScore W4384203465C138885662 @default.
- W4384203465 hasConceptScore W4384203465C142724271 @default.
- W4384203465 hasConceptScore W4384203465C151730666 @default.
- W4384203465 hasConceptScore W4384203465C153180895 @default.
- W4384203465 hasConceptScore W4384203465C154945302 @default.
- W4384203465 hasConceptScore W4384203465C155512373 @default.
- W4384203465 hasConceptScore W4384203465C169903167 @default.
- W4384203465 hasConceptScore W4384203465C2776256026 @default.